1,576 research outputs found

    Four-dimensional lattice results on the MSSM electroweak phase transition

    Get PDF
    We present the results of our large scale 4-dimensional (4d) lattice simulations for the MSSM electroweak phase transition (EWPT). We carried out infinite volume and continuum limit extrapolations and found a transition whose strength agrees well with perturbation theory. We determined the properties of the bubble wall that are important for a successful baryogenesis.Comment: 5 pages, 3figures. Talk presented at Johns Hopkins Workshop on Nonperturbative Quantum Field Theory Methods and their Applications (19-21 August 2000.

    Electroweak Phase Transition in the MSSM: 4-Dimensional Lattice Simulations

    Get PDF
    Recent lattice results have shown that there is no Standard Model (SM) electroweak phase transition (EWPT) for Higgs boson masses above \approx 72 GeV, which is below the present experimental limit. According to perturbation theory and 3-dimensional (3d) lattice simulations there could be an EWPT in the Minimal Supersymmetric Standard Model (MSSM) that is strong enough for baryogenesis up to m_h \approx 105 GeV. In this letter we present the results of our large scale 4-dimensional (4d) lattice simulations for the MSSM EWPT. We carried out infinite volume and continuum limits and found a transition whose strength agrees well with perturbation theory, allowing MSSM electroweak baryogenesis at least up to m_h = 103 \pm 4 GeV. We determined the properties of the bubble wall that are important for a successful baryogenesis.Comment: 4 pages, 4 figures included; lightest Higgs mass bound relaxed (abstract, fig. 3 changed), version to appear in Phys. Rev. Letter

    Contour deformation trick in hybrid NLIE

    Full text link
    The hybrid NLIE of AdS_5 x S^5 is applied to a wider class of states. We find that the Konishi state of the orbifold AdS_5 x (S^5/Z_S) satisfies A_1 NLIE with the source terms which are derived from contour deformation trick. For general states, we construct a deformed contour with which the contour deformation trick yields the correct source terms.Comment: 39 pages, 6 figures, v2: discussion on analyticity constraints replaced by consistent deformed contou

    Hybrid-NLIE for the AdS/CFT spectral problem

    Full text link
    Hybrid-NLIE equations, an alternative finite NLIE description for the spectral problem of the super sigma model of AdS/CFT and its gamma-deformations are derived by replacing the semi-infinite SU(2) and SU(4) parts of the AdS/CFT TBA equations by a few appropriately chosen complex NLIE variables, which are coupled among themselves and to the Y-functions associated to the remaining central nodes of the TBA diagram. The integral equations are written explicitly for the ground state of the gamma-deformed system. We linearize these NLIE equations, analytically calculate the first correction to the asymptotic solution and find agreement with analogous results coming from the original TBA formalism. Our equations differ substantially from the recently published finite FiNLIE formulation of the spectral problem.Comment: 63 pages, 1 figur

    Two New White Dwarfs With Variable Magnetic Balmer Emission Lines

    Full text link
    We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 70564705{-}64 broaden from 9.49.4 MG to 22.222.2 MG over an apparent spin period of 72.62972.629 minutes. Similarly, WD J143019.29562358.33143019.29{-}562358.33 varies from 5.85.8 MG to 8.98.9 MG over its apparent 86.39486.394-minute rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500500 K of 80008000 K and masses ranging from 0.650.83M0.65{-}0.83\,M_{\odot}.Comment: 7 pages, 3 figures. Accepted for publication in MNRA

    Konishi operator at intermediate coupling

    Full text link
    TBA equations for two-particle states from the sl(2) sector proposed by Arutyunov, Suzuki and the author are solved numerically for the Konishi operator descendent up to 't Hooft's coupling lambda ~ 2046. The data obtained is used to analyze the properties of Y-functions and address the issue of the existence of the critical values of the coupling. In addition we find a new integral representation for the BES dressing phase which substantially reduces the computational time.Comment: lots of figures, v2: improved numerics, c1=2, c2=0, c4 does not vanis

    ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    Get PDF
    Air Products set out to investigate the impact of additives on the deposition rate of both ÃÂõCSi and ÃÂñSi-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air ProductsâÃÂàelectronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties
    corecore