378 research outputs found

    Lake expansion elevates equilibrium diversity via increasing colonization

    Get PDF
    Aim Rates of colonization, speciation and extinction determine species richness and endemism in insular systems. The general dynamic model of island biogeography (GDM) predicts that speciation and extinction rates depend on island area and elevation via their control on ecological limits to diversification and therefore covary with an island's geological history. Additionally, the colonization rate may increase with area and elevation through the 'target effect', which can be mediated by reduced 'environmental filtering'. Here we test whether the area and depth expansion of an island-like ecosystem, a lake, caused a shift in diversity dynamics. Location Lake Biwa, Japan, whose geological history and biota are well documented. Taxon Fishes. Methods We extended the phylogenetic island biogeography framework DAISIE (Dynamic Assembly of Island biota through Speciation, Immigration and Extinction) to accommodate time-shifts in macroevolutionary rates and in carrying capacity. Using phylogenetic information on colonization and speciation times for the complete Lake Biwa fish community (70 taxa), we tested for a shift in macroevolutionary assembly rates and reconstructed the temporal diversity trajectory in the lake. We assessed the power to identify a shift through a wide range of scenarios and benchmarked against simulated fossil records. Results We detected an increase in colonization rate of fishes at 0.2 million years ago (Ma), with limited support for the existence of ecological limits. The reconstructed diversity trajectory was close to a source-sink equilibrium diversity prior to the shift and remained well below a new shift-driven elevated equilibrium thereafter. We found sufficient power to identify an increase in colonization rate up to 1.5 Ma, whereas extinction concealed the signal of earlier shifts. Main conclusions The fish diversity dynamics of Lake Biwa show a response to changes in area and depth and phylogenies carry a signature of these changes. The detected increase in colonization rate following Lake Biwa's expansion, elevating the fish diversity, is unlikely due to a predicted increase in ecological limits feeding back on colonization rate. We therefore call for (additional) explanations: the target effect, whereby larger islands attract more species, and reduced environmental filtering due to higher habitat diversity associated with increased lake area/depth

    Pharmacokinetics of Pamidronate in Patients With Bone Metastases

    Get PDF
    Background: Pamidronate is a secondgeneration bisphosphonate used in the treatment of tumor-induced hypercalcemia and in the management of bone metastases from breast cancer, myeloma, or prostate cancer. The pharmacokinetics of pamidronate is unknown in cancer patients. Purpose: To determine the influence of the rate of administration and of bone metabolism, we studied the pharmacokinetics of pamidronate at three different infusion rates in 37 patients with bone metastases. Methods: Three groups of 11-14 patients were given 60 mg pamidronate as an intravenous infusion over a period of 1, 4, or 24 hours. Urine samples were collected in the three groups of patients. Plasma samples were obtained only in the 1-hour infusion group. The assay of pamidronate in plasma and urine was performed by high-performance liquid chromatography with fluorescence detection after the derivatization of pamidronate with fluorescamine. Results: The body retention (BR) at 0-24 hours of pamidronate represented 60%-70% of the administered dose and was not significantly modified by the infusion rate. In particular, the BR at 0-24 hours was not reduced at the fastest infusion rate. Among patients, a threefold variability in BR at 0-24 hours occurred, which was related directly to the number of bone metastases and, to some extent, to creatinine clearance. At 60 mg/hour, the plasma kinetics followed a multiexponential course characterized by a short distribution phase. The mean (±SD) half-life of the distribution phase was 0.8 hour (±0.3), the mean (±SD) of the area under the curve for drug concentration in plasma × time at 0-24 hours was 22.0 × 8.8 μmol/L × hours, and the mean (±SD) of the maximum plasma concentration was 9.7 μmol/L (±3.2). Pharmacokinetic variables remained unchanged after repeated infusions applied to four patients. Clinically, the three infusion rates were equally well tolerated without significant toxicity. Conclusions: The 1-hour infusion rate could be proposed as kinetically appropriate for the administration of pamidronate to patients with metastatic bone diseases. [J Natl Cancer Inst 84: 788-792, 1992

    Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid

    Get PDF
    The quality of spatial analyses of biodiversity is improved by (i) utilizing study areas with well defined physiogeographical boundaries, (ii) limiting the impact of widespread species, and (iii) using taxa with heterogeneous distributions. These conditions are typically met by ecosystems such as oceanic islands or ancient lakes and their biota. While research on ancient lakes has contributed significantly to our understanding of evolutionary processes, statistically sound studies of spatial variation of extant biodiversity have been hampered by the frequently vast size of ancient lakes, their limited accessibility, and the lack of scientific infrastructure. The European ancient Lake Ohrid provides a rare opportunity for such a reliable spatial study. The comprehensive horizontal and vertical sampling of a species-rich taxon, the Gastropoda, presented here, revealed interesting patterns of biodiversity, which, in part, have not been shown before for other ancient lakes. <br><br> In a total of 284 samples from 224 different locations throughout the Ohrid Basin, 68 gastropod species, with 50 of them (= 73.5%) being endemic, could be reported. The spatial distribution of these species shows the following characteristics: (i) within Lake Ohrid, the most frequent species are endemic taxa with a wide depth range, (ii) widespread species (i.e. those occurring throughout the Balkans or beyond) are rare and mainly occur in the upper layer of the lake, (iii) while the total number of species decreases with water depth, the proportion of endemics increases, and (iv) the deeper layers of Lake Ohrid appear to have a higher spatial homogeneity of biodiversity. Moreover, gastropod communities of Lake Ohrid and its feeder springs are both distinct from each other and from the surrounding waters. The analysis also shows that community similarity of Lake Ohrid is mainly driven by niche processes (e.g. environmental factors), but also by neutral processes (e.g. dispersal limitation and evolutionary histories of species). For niche-based mechanisms it is shown that large scale effects such as type of water body or water depth are mainly responsible for the similarity of gastropod communities, whereas small scale effects like environmental gradients affect gastropod compositions only marginally. In fact, neutral processes appear to be more important than the small scale environmental factors, thus emphasizing the importance of dispersal capacities and evolutionary histories of species

    Single-Pion Production in pp Collisions at 0.95 GeV/c (II)

    Get PDF
    The single-pion production reactions ppdπ+pp\to d\pi^+, ppnpπ+pp\to np\pi^+ and ppppπ0pp\to pp\pi^0 were measured at a beam momentum of 0.95 GeV/c (TpT_p \approx 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the npπ+np\pi^+ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the ppπ0pp\pi^0 channel we find in the npπ+np\pi^+ channel a strong influence of the Δ\Delta excitation already at this energy close to threshold. In particular we find a (3cos2Θ+1)(3 cos^2\Theta + 1) dependence in the pion angular distribution, typical for a pure s-channel Δ\Delta excitation and identical to that observed in the dπ+d\pi^+ channel. Since the latter is understood by a s-channel resonance in the 1D2^1D_2 pnpn partial wave, we discuss an analogous scenario for the pnπ+pn\pi^+ channel

    Pharmacokinetics of pamidronate in patients with bone metastases

    Get PDF
    BACKGROUND: Pamidronate is a second-generation bisphosphonate used in the treatment of tumor-induced hypercalcemia and in the management of bone metastases from breast cancer, myeloma, or prostate cancer. The pharmacokinetics of pamidronate is unknown in cancer patients. PURPOSE: To determine the influence of the rate of administration and of bone metabolism, we studied the pharmacokinetics of pamidronate at three different infusion rates in 37 patients with bone metastases. METHODS: Three groups of 11-14 patients were given 60 mg pamidronate as an intravenous infusion over a period of 1, 4, or 24 hours. Urine samples were collected in the three groups of patients. Plasma samples were obtained only in the 1-hour infusion group. The assay of pamidronate in plasma and urine was performed by high-performance liquid chromatography with fluorescence detection after the derivatization of pamidronate with fluorescamine. RESULTS: The body retention (BR) at 0-24 hours of pamidronate represented 60%-70% of the administered dose and was not significantly modified by the infusion rate. In particular, the BR at 0-24 hours was not reduced at the fastest infusion rate. Among patients, a threefold variability in BR at 0-24 hours occurred, which was related directly to the number of bone metastases and, to some extent, to creatinine clearance. At 60 mg/hour, the plasma kinetics followed a multiexponential course characterized by a short distribution phase. The mean (+/- SD) half-life of the distribution phase was 0.8 hour (+/- 0.3), the mean (+/- SD) of the area under the curve for drug concentration in plasma x time at 0-24 hours was 22.0 +/- 8.8 mumol/L x hours, and the mean (+/- SD) of the maximum plasma concentration was 9.7 mumol/L (+/- 3.2). Pharmacokinetic variables remained unchanged after repeated infusions applied to four patients. Clinically, the three infusion rates were equally well tolerated without significant toxicity. CONCLUSIONS: The 1-hour infusion rate could be proposed as kinetically appropriate for the administration of pamidronate to patients with metastatic bone diseases

    On the Production of π+π+\pi^+\pi^+ Pairs in pp Collisions at 0.8 GeV

    Get PDF
    Data accumulated recently for the exclusive measurement of the ppppπ+πpp\to pp\pi^+\pi^- reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the ppnnπ+π+pp \to nn\pi^+\pi^+ reaction channel. The latter is expected to be the only ππ\pi\pi production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the ππ\pi\pi production process. No single event has been found, which meets all conditions for being a candidate for the ppnnπ+π+pp \to nn \pi^+\pi^+ reaction. This gives an upper limit for the cross section of 0.16 μ\mub (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure
    corecore