64 research outputs found
The nucleus pulposus microenvironment in the intervertebral disc: the fountain of youth?
The intervertebral disc (IVD) is a complex tissue, and its degeneration remains a problem for patients, without significant improvement in treatment strategies. This mostly age-related disease predominantly affects the nucleus pulposus (NP), the central region of the IVD. The NP tissue, and especially its microenvironment, exhibit changes that may be involved at the outset or affect the progression of IVD pathology. The NP tissue microenvironment is unique and can be defined by a variety of specific factors and components characteristic of its physiology and function. NP progenitor cell interactions with their surrounding microenvironment may be a key factor for the regulation of cellular metabolism, phenotype, and stemness. Recently, celltransplantation approaches have been investigated for the treatment of degenerative disc disease, highlighting the need to better understand if and how transplanted cells can give rise to healthy NP tissue. Hence, understanding all the components of the NP microenvironment seems to be critical to better gauge the success and outcomes of approaches for tissue engineering and future clinical applications. Knowledge about the components of the NP microenvironment, how NP progenitor cells interact with them, and how changes in their surroundings can alter their function is summarised. Recent discoveries in NP tissue engineering linked to the microenvironment are also reviewed, meaning how crosstalk within the microenvironment can be adjusted to promote NP regeneration. Associated clinical problems are also considered, connecting bench-to-bedside in the context of IVD degeneration
Spheroid-Like Cultures for Expanding Angiopoietin Receptor-1 (aka. Tie2) Positive Cells from the Human Intervertebral Disc.
Lower back pain is a leading cause of disability worldwide. The recovery of nucleus pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix (ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR), immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched the percentage of Tie2+ in NPCs' population from ~10% to ~36%. Moreover, the spheroid-formation assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture system could be successfully applied to the culture and expansion of tissue-specific progenitors
Effect of different cryopreservation media on human nucleus pulposus cells' viability and trilineage potential
Introduction: Low back pain (LBP) is a significant cause of disability in many countries, affecting more than half a billion people worldwide. In the past, progenitor cells have been found within the nucleus pulposus (NP) of the human intervertebral disc (IVD). However, in the context of cell therapy, little is known about the effect of cryopreservation and expansion on here called âheterogenicâ human NP cells (hNPCs), and whether commercially available cryopreservation media are more efficient than âcommonly usedâ media in terms of cell viability.
Materials: In this study, hNPCs from four trauma patients (age 40.5â±â14.3âyears) and two patients with degenerated IVDs (age 24 and 46âyears), undergoing spinal surgery, were collected. To isolate hNPCs, the tissue was digested with a mild two-step protocol. After subsequent expansion, hNPCs at passages 2-5 were separated and either cryo-preserved for 1âweek at â150°C or differentiated into osteogenic, adipogenic, or chondrogenic lineages for 21âdays. Cryopreservation was performed with five different media to compare their effect on the cell's viability and differentiation potential. Cell viability was determined with flow cytometry using propidium iodide and the trilineage differentiation potential was assessed by quantitative polymerase chain reaction and histological analysis.
Results: After 1âweek of cryopreservation, the hNPC's cell viability was comparable for all conditions, that is, independent of the cryopreservation medium used (82.3â±â0.8% of cell viability). Furthermore, hNPCs from trauma patients showed some evidence for adipogenic and chondrogenic differentiation and at lower levels, this and evidence of osteogenic differentiation could be confirmed with hNPCs from degenerated discs. Moreover, cryopreservation did not affect the cell's differentiation potential in the majority of the cases tested.
Conclusion: âCommonly usedâ cryopreservation media seem to perform just as well as commercially available media in terms of cell viability and the overall maintenance of the hNPCs trilineage differentiation potential
Towards Tissue-Specific Stem Cell Therapy for the Intervertebral Disc: PPARÎŽ Agonist Increases the Yield of Human Nucleus Pulposus Progenitor Cells in Expansion
(1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The NPPCs were also identified to be positive for the angiopoietin-1 receptor (Tie2). Similar to hematopoietic stem cells, Tie2 might be involved in peroxisome proliferator-activated receptor delta (PPARÎŽ) agonist-induced self-renewal regulation. The purpose of this study was to investigate whether a PPARÎŽ agonist (GW501516) increases the Tie2+ NPPCsâ yield within the heterogeneous nucleus pulposus cell (NPC) population. (2) Methods: Primary NPCs were treated with 10 ”M of GW501516 for eight days. Mitochondrial mass was determined by microscopy, using mitotracker red dye, and the relative gene expression was quantified by qPCR, using extracellular matrix and mitophagy-related genes. (3) The NPCâs group treated with the PPARÎŽ agonist showed a significant increase of the Tie2+ NPCs yield from ~7% in passage 1 to ~50% in passage two, compared to the NPCs vehicle-treated group. Furthermore, no significant differences were found among treatment and control, using qPCR and mitotracker deep red. (4) Conclusion: PPARÎŽ agonist could help to increase the Tie2+ NPCs yield during NPC expansion
Gender authorship trends in spine research publications - Research across different countries from 1976 to 2020.
âąGender trends in authorship showed an increase in female authors from 1976 to 2020.âąIn 2020, Europe had the highest and Asia the lowest proportion of female authors.âąThe Netherlands had the highest proportion of women and Japan the lowest
Influence of Angiopoietin Treatment with Hypoxia and Normoxia on Human Intervertebral Disc Progenitor Cellâs Proliferation, Metabolic Activity, and Phenotype
Increasing evidence implicates intervertebral disc (IVD) degeneration as a major contributor to low back pain. In addition to a series of pathogenic processes, degenerated IVDs become vascularized in contrast to healthy IVDs. In this context, angiopoietin (Ang) plays a crucial role and is involved in cytokine recruitment, and anabolic and catabolic reactions within the extracellular matrix (ECM). Over the last decade, a progenitor cell population has been described in the nucleus pulposus (NP) of the IVD to be positive for the Tie2 marker (also known as Ang-1 receptor). In this study, we investigated the influence of Ang-1 and Ang-2 on human NP cell (Tie2+, Tie2- or mixed) populations isolated from trauma patients during 7 days in normoxia (21% O2) or hypoxia (†5% O2). At the end of the process, the proliferation and metabolic activity of the NP cells were analyzed. Additionally, the relative gene expression of NP-related markers was evaluated. NP cells showed a higher proliferation depending on the Ang treatment. Moreover, the study revealed higher NP cell metabolism when cultured in hypoxia. Additionally, the relative gene expression followed, with an increase linked to the oxygen level and Ang concentration. Our study comparing different NP cell populations may be the start of new approaches for the treatment of IVD degeneration
Atomic-scale confinement of optical fields
In the presence of matter there is no fundamental limit preventing
confinement of visible light even down to atomic scales. Achieving such
confinement and the corresponding intensity enhancement inevitably requires
simultaneous control over atomic-scale details of material structures and over
the optical modes that such structures support. By means of self-assembly we
have obtained side-by-side aligned gold nanorod dimers with robust
atomically-defined gaps reaching below 0.5 nm. The existence of
atomically-confined light fields in these gaps is demonstrated by observing
extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer
eigenmodes of more than 800 meV in white-light scattering experiments. Our
results open new perspectives for atomically-resolved spectroscopic imaging,
deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the
realization of novel quantum-optical devices
Emerging IT risks: insights from German banking
How do German banks manage the emerging risks stemming from IT innovations such as cyber risk? With a focus on process, roles and responsibilities, field data from ten banks participating in the 2014 ECB stress test were collected by interviewing IT managers, risk managers and external experts. Current procedures for handling emerging risks in German banks were identified from the interviews and analysed, guided by the extant literature. A clear gap was found between enterprise risk management (ERM) as a general approach to risks threatening firmsâ objectives and ERMâs neglect of emerging risks, such as those associated with IT innovations. The findings suggest that ERM should be extended towards the collection and sharing of knowledge to allow for an initial understanding and description of emerging risks, as opposed to the traditional ERM approach involving estimates of impact and probability. For example, as cyber risks emerge from an IT innovation, the focus may need to switch towards reducing uncertainty through knowledge acquisition. Since individual managers seldom possess all relevant knowledge of an IT innovation, various stakeholders may need to be involved to exploit their expertise
- âŠ