32 research outputs found

    Nanofocusing in SOI-based hybrid plasmonic metal slot waveguides

    Get PDF
    Abstract: Through a process of efficient dielectric to metallic waveguide mode conversion, we calculate a >400-fold field intensity enhancement in a silicon photonics compatible nanofocusing device. A metallic slot waveguide sits on top of the silicon slab waveguide with nanofocusing being achieved by tapering the slot width gradually. We evaluate the conversion between the numerous photonic modes of the planar silicon waveguide slab and the most confined plasmonic mode of a 20 x 50 nm2 slot in the metallic film. With an efficiency of ~80%, this system enables remarkably effective nanofocusing, although the small amount of inter-mode coupling shows that this structure is not quite adiabatic. In order to couple photonic and plasmonic modes efficiently, in-plane focusing is required, simulated here by curved input grating couplers. The nanofocusing device shows how to efficiently bridge the photonic micro-regime and the plasmonic nano-regime whilst maintaining compatibility with the silicon photonics platform

    Baryon Operators and Baryon Spectroscopy

    Full text link
    The issues involved in a determination of the baryon resonance spectrum in lattice QCD are discussed. The variational method is introduced and the need to construct a sufficient basis of interpolating operators is emphasised. The construction of baryon operators using group-theory techniques is outlined. We find that the use both of quark-field smearing and link-field smearing in the operators is essential firstly to reduce the coupling of operators to high-frequency modes and secondly to reduce the gauge-field fluctuations in correlators. We conclude with a status report of our current investigation of baryon spectroscopy.Comment: Invited talk at Workshop on Computational Hadron Physics, Cyprus, Sept. 14-17, 200

    Electromagnetic Form Factors with FLIC fermions

    Get PDF
    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a) improvement and allows efficient access to the light quark-mass regime. FLIC fermions enable the construction of the nonperturbatively O(a)-improved conserved vector current without the difficulties associated with the fine tuning of the improvement coefficients. The simulations are performed with an O(a^2) mean-field improved plaquette-plus-rectangle gluon action on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm, enabling the first simulation of baryon form factors at light quark masses on a large volume lattice. Magnetic moments, electric charge radii and magnetic radii are extracted from these form factors, and show interesting chiral nonanalytic behavior in the light quark mass regime.Comment: Presented by J.Zanotti at the Workshop on Lattice Hadron Physics, Cairns, Australia, 2003. 7pp, 8 figure

    NRQCD Results on Form Factors

    Get PDF
    We report results on fBf_B and semi-leptonic BB decay form factors using NRQCD. We investigate 1/M1/M scaling behavior of decay amplitudes. For fBf_B Effect of higher order relativistic correction terms are also studied.Comment: 9 pgs. 10 figures. Latex2e. espcrc2.sty included. Talk presented at the Internatioal Workshop "LATTICE QCD ON PARALLEL COMPUTERS", March 1997, Tsukub

    Novel fat-link fermion actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using smeared links. The simulations are performed on a 16^3 X 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative O(a) improvement.Comment: 5 pages, 2 figures, talk given by J.Zanotti at LHP 2001 workshop, Cairns, Australi

    Spin-3/2 Nucleon and Delta Baryons in Lattice QCD

    Full text link
    We present first results for masses of spin-3/2 N and Delta baryons in lattice QCD using Fat-Link Irrelevant Clover (FLIC) fermions. Spin-3/2 interpolating fields providing overlap with both spin-3/2 and spin-1/2 states are considered. In the isospin-1/2 sector, we observe, after appropriate spin and parity projection, a strong signal for the J^P=3/2^- state together with a weak but discernible signal for the 3/2^+ state with a mass splitting near that observed experimentally. We also find good agreement between the 1/2^+/- masses and earlier nucleon mass simulations with the standard spin-1/2 interpolating field. For the isospin-3/2 Delta states, clear mass splittings are observed between the various 1/2^+/- and 3/2^+/- channels, with the calculated level orderings in good agreement with those observed empirically.Comment: 17 pages, 8 figures, 2 table

    Hadron Properties with FLIC Fermions

    Full text link
    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behaviour associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.Comment: 29 pages, 13 figures, 6 tables. Contribution to lecure notes in 2nd Cairns Topical Workshop on Lattice Hadron Physics 2003 (LHP 2003), Cairns, Australia, 22-30 Jul 200

    Baryon Spectroscopy in Lattice QCD

    Full text link
    We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.Comment: Contribution to Lecture Notes in Physics on Lattice Hadron Physics, 43 pages, 11 figures, 3 table

    Selected nucleon form factors and a composite scalar diquark

    Get PDF
    A covariant, composite scalar diquark, Fadde'ev amplitude model for the nucleon is used to calculate pseudoscalar, isoscalar- and isovector-vector, axial-vector and scalar nucleon form factors. The last yields the nucleon sigma-term and on-shell sigma-nucleon coupling. The calculated form factors are soft, and the couplings are generally in good agreement with experiment and other determinations. Elements in the dressed-quark-axial-vector vertex that are not constrained by the Ward-Takahashi identity contribute ~20% to the magnitude of g_A. The calculation of the nucleon sigma-term elucidates the only unambiguous means of extrapolating meson-nucleon couplings off the meson mass-shell.Comment: 12 pages, REVTEX, 5 figures, epsfi

    Excited Baryons in Lattice QCD

    Get PDF
    We present first results for the masses of positive and negative parity excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action and a fat-link irrelevant clover (FLIC) fermion action in which only the irrelevant operators are constructed with APE-smeared links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner. An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a small mass splitting. The study of different Lambda interpolating fields suggests a similar splitting between the lowest two Lambda1/2^- octet states. However, the empirical mass suppression of the Lambda^*(1405) is not evident in these quenched QCD simulations, suggesting a potentially important role for the meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating fields.Comment: Correlation matrix analysis performed. Increased to 400 configurations. 22 pages, 13 figures, 15 table
    corecore