20 research outputs found

    Integrated Object-Based Image Analysis for semi-automated geological lineament detection in Southwest England

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record.Regional lineament detection for mapping of geological structure can provide crucial information for mineral exploration. Manual methods of lineament detection are time consuming, subjective and unreliable. The use of semi-automated methods reduces the subjectivity through applying a standardised method of searching. Object-Based Image Analysis (OBIA) has become a mainstream technique for classification of landcover, however, the use of OBIA methods for lineament detection is still relatively under-utilised. The Southwest England region is covered by high-resolution airborne geophysics and LiDAR data that provide an excellent opportunity to demonstrate the power of OBIA methods for lineament detection. Herein, two complementary but stand-alone OBIA methods for lineament detection are presented which both enable semi-automatic regional lineament mapping. Furthermore, these methods have been developed to integrate multiple datasets to create a composite lineament network. The top-down method uses threshold segmentation and sub-levels to create objects, whereas the bottom-up method segments the whole image before merging objects and refining these through a border assessment. Overall lineament lengths are longest when using the top-down method which also provides detailed metadata on the source dataset of the lineament. The bottom-up method is more objective and computationally efficient and only requires user knowledge to classify lineaments into major and minor groups. Both OBIA methods create a similar network of lineaments indicating that semi-automatic techniques are robust and consistent. The integration of multiple datasets from different types of spatial data to create a comprehensive, composite lineament network is an important development and demonstrates the suitability of OBIA methods for enhancing lineament detection.British Geological Survey (BGS)Natural Environment Research Council (NERC

    Using radioelement distributions to classify a composite granite batholith in the South West England Orefield

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record

    National geohazards mapping in Europe: interferometric analysis of the Netherlands

    Get PDF
    The launch of Copernicus, the largest Earth Observation program to date, is significant due to the regular, reliable and freely accessible data to support space-based geodetic monitoring of physical phenomena that can result in natural hazards. In this study, wide area interferometric synthetic aperture radar (InSAR) capability is demonstrated by processing 436 Copernicus Sentinel-1 C-Band SAR images (May 2015–May 2017) using the Intermittent Small Baseline Subset (ISBAS) method to produce a wide-area-map (WAM) covering the Netherlands and extending into neighbouring areas of Belgium and Germany. Ground deformation velocities from six interferometric stacks, containing over 19 million measurements, were mosaicked together to produce a seamless ISBAS-WAM over some 53,000 km2 achieving a ground coverage of 94%. The retrieval of low-resolution measurements over soft surfaces (i.e. agricultural fields, forests, semi-natural areas and wetlands) afforded by the ISBAS technique was crucial due the dominance of non-urban land cover. Across the WAM, the spatial distribution of deformations concurs with independent sources of data, such as previous persistent scatterer interferometry (PSI) deformation maps, models of subsidence and settlement susceptibility, and quantitatively with GPS measurements over the Groningen gas field. A statistical analysis of the velocities reveals that intermittently coherent measurements in rural areas can provide reliable, additional deformation information with a very high degree of confidence (5σ), much of which is spatially correlated to known deformation features associated with compressible soils, infrastructure, peat oxidation, oil and gas production, salt mining and underground and opencast mining.Remotely derived deformation products, with near complete spatial coverage, provide a powerful tool for mitigation and remediation against adverse geological conditions to help in the protection of assets, property and life. The ISBAS-WAM demonstrates that routine generation of such products on a continental scale is now theoretically achievable, given the recent establishment of the Copernicus programme and the development of state-of-the-art InSAR methods such as ISBAS

    Impact of meteorological conditions on water resources in the Upper East Region of Ghana using remotely-sensed and modelled hydrological data

    Get PDF
    Study region:  The Upper East Region, Ghana, West Africa, lies within the Volta Basin, floods annually, and contributes substantially to Ghana's food production.  Study focus:  We assessed precipitation (P), evapotranspiration (ET), and total water storage anomalies from GRACE (TWSA) and GLDAS-Noah (TWCA) to study the influence of the UER's climate on water availability between 2002 and 2017. We analysed (1) the relative uncertainties of the data sets using the triple-cornered hat method, (2) the terrestrial water budget to validate TWSA/TWCA and (3) cross- and multi-correlation analyses to study the relationship between water storage (or availability) and meteorological variables.  New hydrological insights:  We found strong correlations between the different P products (r > 0.96), between the different GRACE products (r > 0.95), but not between the different ET products. The hybrid P, TWSA from the Jet Propulsion Laboratory, and ET from ERA-5 had the smallest relative uncertainties. TWSA increased by 9.8 ± 0.8 mm yr−1 while TWCA decreased. P and ET showed no evidence of a trend and were similarly influenced by the other meteorological variables. However, 93 of 183 months had water surplus and mean net P was positive – indicating the UER received more water than it lost. These agree with the increasing TWSA trend. The water budget validation also confirmed that GRACE can be used for water management; GLDAS-Noah underestimates storage in the UER.</p

    Glastir Monitoring & Evaluation Programme. Second year annual report

    Get PDF
    What is the purpose of Glastir Monitoring and Evaluation Programme? Glastir is the main scheme by which the Welsh Government pays for environmental goods and services whilst the Glastir Monitoring and Evaluation Programme (GMEP) evaluates the scheme’s success. Commissioning of the monitoring programme in parallel with the launch of the Glastir scheme provides fast feedback and means payments can be modified to increase effectiveness. The Glastir scheme is jointly funded by the Welsh Government (through the Rural Development Plan) and the EU. GMEP will also support a wide range of other national and international reporting requirements. What is the GMEP approach? GMEP collects evidence for the 6 intended outcomes from the Glastir scheme which are focussed on climate change, water and soil quality, biodiversity, landscape, access and historic environment, woodland creation and management. Activities include; a national rolling monitoring programme of 1km squares; new analysis of long term data from other schemes combining with GMEP data where possible; modelling to estimate future outcomes so that adjustments can be made to maximise impact of payments; surveys to assess wider socio-economic benefits; and development of novel technologies to increase detection and efficiency of future assessments. How has GMEP progressed in this 2nd year? 90 GMEP squares were surveyed in Year 2 to add to the 60 completed in Year 1 resulting in 50% of the 300 GMEP survey squares now being completed. Squares will be revisited on a 4 year cycle providing evidence of change in response to Glastir and other pressures such as changing economics of the farm business, climate change and air pollution. This first survey cycle collects the baseline against which future changes will be assessed. This is important as GMEP work this year has demonstrated land coming into the scheme is different in some respects to land outside the scheme. Therefore, future analysis to detect impact of Glastir will be made both against the national backdrop from land outside the scheme and this baseline data from land in scheme. A wide range of analyses of longterm data has been completed for all Glastir Outcomes with the exception of landscape quality and historic features condition for which limited data is available. This has involved combining data with 2013/14 GMEP data when methods allow. Overall analysis of long term data indicates one of stability but with little evidence of improvement with the exception of headwater quality, greenhouse gas emissions and woodland area for which there has been improvement over the last 20 years. Some headline statistics include: 51% of historic features in excellent or sound condition; two thirds of public rights of way fully open and accessible; improvement in hedgerow management with 85% surveyed cut in the last 3 years but < 1% recently planted; 91% of streams had some level of modification but 60% retained good ecological quality; no change topsoil carbon content over last 25 years. What is innovative? GMEP has developed various new metrics to allow for more streamlined reporting in the future. For example a new Priority Bird species Index for Wales which combines data from 35 species indicates at least half have stable or increasing populations. The new GMEP Visual Quality Landscape Index has been tested involving over 2600 respondents. Results have demonstrated its value as an objective and repeatable method for quantifying change in visual landscape quality. A new unified peat map for Wales has been developed which has been passed to Glastir Contract Managers to improve targeting of payments when negotiating Glastir contracts. An estimate of peat soil contribution to current greenhouse gas emissions due to human modification has been calculated. Models have allowed quantification of land area helping to mitigate rainfall runoff. We are using new molecular tools to explore the effects of Glastir on soil organisms and satellite technologies to quantify e.g. small woody features and landcover change. Finally we are using a community approach to develop a consensus on how to define and report change in High Nature Value Farmland which will be reported in the Year 3 GMEP report

    Glastir Monitoring & Evaluation Programme. Final report

    Get PDF
    Final Report to Welsh Government, prepared by CEH on behalf of the Glastir Monitoring & Evaluation Programme Team. The Glastir Monitoring and Evaluation Programme (GMEP) provides a comprehensive programme to establish a baseline against which future assessments of Glastir can be made. GMEP also contributes national trend data which supports a range of national and international biodiversity and environmental targets. GMEP fulfils a commitment by the Welsh Government to establish a monitoring programme concurrently with the launch of the Glastir scheme. The use of models and farmer surveys provides early indicators of the likely direction, magnitude and timing of future outcomes. The programme ensures compliance with the rigorous requirements of the European Commission’s Common Monitoring and Evaluation Framework (CMEF) through the Rural Development Plan (RDP) for Wales. This report represents the final results of the GMEP programme which ran from 2012 to 2016

    Additional Data for "Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse".

    No full text
    1. ISBAS InSAR time-series data for locations on the Brumadinho tailings dam. 2. Brumadinho tailings dam failure prediction data. 3. Daily rainfall data for the Cercadinho-F501 meteorological station. 4. Daily rainfall data for the Rola Moça-A555 meteorological station. 5. ISBAS InSAR time-series data for locations on the Sul Superior tailings dam

    Arkive V

    No full text

    Arkive IV

    No full text

    On Hold

    No full text
    corecore