110 research outputs found

    Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions**

    Get PDF
    Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress

    High Cell Diversity and Complex Peptidergic Signaling Underlie Placozoan Behavior.

    Get PDF
    Placozoans, together with sponges, are the only animals devoid of a nervous system and muscles, yet both respond to sensory stimulation in a coordinated manner. How behavioral control in these free-living animals is achieved in the absence of neurons and, more fundamentally, how the first neurons evolved from more primitive cells for communication during the rise of animals are not yet understood [1-5]. The placozoan Trichoplax adhaerens is a millimeter-wide, flat, free-living marine animal composed of six morphologically identified cell types distributed across a simple body plan [6-9]: a thin upper epithelium and a columnar lower epithelium interspersed with a loose layer of fiber cells in between. Its genome contains genes encoding several neuropeptide-precursor-like proteins and orthologs of proteins involved in neurosecretion in animals with a nervous system [10-12]. Here we investigate peptidergic signaling in T. adhaerens. We found specific expression of several neuropeptide-like molecules in non-overlapping cell populations distributed over the three cell layers, revealing an unsuspected cell-type diversity of T. adhaerens. Using live imaging, we discovered that treatments with 11 different peptides elicited striking and consistent effects on the animals' shape, patterns of movement, and velocity that we categorized under three main types: (1) crinkling, (2) turning, and (3) flattening and churning. Together, the data demonstrate a crucial role for peptidergic signaling in nerveless placozoans and suggest that peptidergic volume signaling may have pre-dated synaptic signaling in the evolution of nervous systems

    Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches

    Get PDF
    The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies

    Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    Get PDF
    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARΎ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARΎ

    Analysis of MEFV exon methylation and expression patterns in familial Mediterranean fever

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MEFV mutations and decreased expression level of the gene are related to FMF pathology. DNA methylation at CpG islands is a well-known mechanism for transcriptional silencing. MEFV has a CpG island, spanning a part of the first intron and the whole of the second exon of the gene covering 998 bp region. Here, we tested the hypothesis that the MEFV transcript level in FMF patients correlates with its methylation level, and methylation, by allowing transcription silencing, has a role in FMF ethiopathogenesis.</p> <p>Methods</p> <p>The study group was composed of pediatric FMF patients (N = 51) and age-gender matched healthy controls (N = 21). The relative expression level of MEFV was assessed via quantitative real-time PCR (qRT-PCR) and bisulfite sequencing (BS) was performed to analyse the methylation level quantitatively.</p> <p>Results</p> <p>MEFV expression in FMF patients were decreased compared to healthy controls (<it>P </it>= 0.031). Methylation level of exon 2 of MEFV was found to be slightly higher in FMF patients compared to healthy controls (76% versus 74%) (<it>P </it>= 0.049). The expression level of the MEFV was negatively correlated with the methylation level of the CpG island in both FMF and healthy controls groups (cor = -0.29, <it>P </it>= 0.041) but more so in the FMF only group (cor = -0.36, <it>P </it>= 0.035).</p> <p>Conclusions</p> <p>In this study, the relation between reduced MEFV expression level and FMF was confirmed. Observed slight increase in methylation in FMF patients, and correlation of methylation with expression might be indicative of its role in FMF, however a larger dataset is needed to confirm our preliminary findings.</p

    Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production

    Get PDF
    The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries

    Alternative Splicing and Nonsense-Mediated RNA Decay Contribute to the Regulation of SHOX Expression

    Get PDF
    The human SHOX gene is composed of seven exons and encodes a paired-related homeodomain transcription factor. SHOX mutations or deletions have been associated with different short stature syndromes implying a role in growth and bone formation. During development, SHOX is expressed in a highly specific spatiotemporal expression pattern, the underlying regulatory mechanisms of which remain largely unknown. We have analysed SHOX expression in diverse embryonic, fetal and adult human tissues and detected expression in many tissues that were not known to express SHOX before, e.g. distinct brain regions. By using RT-PCR and comparing the results with RNA-Seq data, we have identified four novel exons (exon 2a, 7-1, 7-2 and 7-3) contributing to different SHOX isoforms, and also established an expression profile for the emerging new SHOX isoforms. Interestingly, we found the exon 7 variants to be exclusively expressed in fetal neural tissues, which could argue for a specific role of these variants during brain development. A bioinformatical analysis of the three novel 3â€ČUTR exons yielded insights into the putative role of the different 3â€ČUTRs as targets for miRNA binding. Functional analysis revealed that inclusion of exon 2a leads to nonsense-mediated RNA decay altering SHOX expression in a tissue and time specific manner. In conclusion, SHOX expression is regulated by different mechanisms and alternative splicing coupled with nonsense-mediated RNA decay constitutes a further component that can be used to fine tune the SHOX expression level

    Design and Performance of a Novel Low Energy Multi-Species Beamline for the ALPHA Antihydrogen Experiment

    Full text link
    The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has recently implemented a novel beamline for low-energy (â‰Č\lesssim 100 eV) positron and antiproton transport between cylindrical Penning traps that have strong axial magnetic fields. Here, we describe how a combination of semianalytical and numerical calculations were used to optimise the layout and design of this beamline. Using experimental measurements taken during the initial commissioning of the instrument, we evaluate its performance and validate the models used for its development. By combining data from a range of sources, we show that the beamline has a high transfer efficiency, and estimate that the percentage of particles captured in the experiments from each bunch is (78 ±\pm 3)% for up to 10510^{5} antiprotons, and (71 ±\pm 5)% for bunches of up to 10710^{7} positrons.Comment: 15 pages, 15 figure
    • 

    corecore