30 research outputs found

    Lung transplantation: Chronic allograft dysfunction and establishing immune tolerance

    Get PDF
    Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient’s innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation

    Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis

    Get PDF
    The epithelial complement inhibitory proteins (CIPs) cluster of differentiation 46 and 55 (CD46 and CD55) regulate circulating immune complex-mediated complement activation in idiopathic pulmonary fibrosis (IPF). Our previous studies demonstrated that IL-17A mediates epithelial injury via transforming growth factor β1 (TGF-β1) and down-regulates CIPs. In the current study, we examined the mechanistic role of TGF-β1 in complement activation-mediated airway epithelial injury in IPF pathogenesis. We observed lower epithelial CIP expression in IPF lungs compared to normal lungs, associated with elevated levels of complement component 3a and 5a (C3a and C5a), locally and systemically. In normal primary human small airway epithelial cells (SAECs) treated with TGF-β1 (10 ng/ml), C3a, or C5a (100 nM), we observed loss of CIPs and increased poly(ADP-ribose) polymerase (PARP) activation [also observed with RNA interference (RNAi) of CD46/CD55]. TGF-β1-mediated loss of CIPs and Snail induction [SNAI1; a transcriptional repressor of E-cadherin (E-CAD)] was blocked by inhibiting mitogen-activated protein kinase (p38MAPK; SB203580) and RNAi silencing of SNAI1. C3a- and C5a-mediated loss of CIPs was also blocked by p38MAPK inhibition. While C3a upregulated TGFb transcripts, both C3a and C5a down-regulated SMAD7 (negative regulator of TGF-β), and whereas TGF-β1 induced C3a/C5a receptor (C3aR/C5aR) expression, pharmacologic C3aR/C5aR inhibition protected against C3a-/C5a-mediated loss of CIPs. Taken together, our results suggest that epithelial injury in IPF can be collectively amplified as a result of TGF-β1-induced loss of CIPs leading to complement activation that down-regulates CIPs and induces TGF-β1 expressio

    Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium

    Get PDF
    Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium

    Proteomic characterization reveals that MMP-3 correlates with bronchiolitis obliterans syndrome following allogeneic hematopoietic cell and lung transplantation

    Get PDF
    Improved diagnostic methods are needed for bronchiolitis obliterans syndrome (BOS), a serious complication after allogeneic hematopoietic cell transplantation (HCT) and lung transplantation. For proteins candidate discovery, we compared plasma pools from HCT transplantation recipients with: BOS at onset (n=12), pulmonary infection (n=16), chronic graft-versus-host disease without pulmonary involvement (n=15), and no chronic complications post-HCT (n=15). Pools were labeled with different tags [isobaric Tags for Relative and Absolute Quantification (iTRAQ)], and two software tools identified differentially expressed proteins (≥1.5-fold change). Candidate proteins were further selected using a six-step computational biology approach. The diagnostic value of the lead candidate, matrix metalloproteinase-3 (MMP-3), was evaluated by ELISA in plasma of a verification cohort (n=112) with and without BOS following HCT (n=76) or lung transplantation (n=36). MMP-3 plasma concentrations differed significantly between patients with and without BOS (AUC=0.77). Thus, MMP-3 represents a potential non-invasive blood test for diagnosis of BOS

    The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation

    Get PDF
    Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation

    CLINICAL TRIALS OF TREATMENT FOR NON COGNITIVE SYMPTOMS OF DEMENTIA.POSITION PAPER FROM THE INTERNATIONAL WORKING GROUP ON HARMONIZATION OF DEMENTIA DRUG GUIDELINES

    No full text
    corecore