19 research outputs found
Liquefaction Hazard Mitigation by Prefabricated Vertical Drains
Liquefaction has typically been mitigated by in-situ densification; however vertical composite drains offer the possibility of preventing liquefaction and associated settlement while reducing the cost and time required for treatment. Three case histories are presented which describe the use of vertical drains to mitigate liquefaction hazard and techniques to control the flow of water exiting the drains. In addition, results from a test case are presented where controlled blasting techniques were used to evaluate drain performance in-situ. Blasting was successful in liquefying loose sand in an untreated test site. Similar blast charges were then detonated at adjacent sites treated with drains. Measurements demonstrated that the drains significantly increased the rate of pore pressure dissipation. In addition, the installation process typically densified the surrounding soil, thereby decreasing the liquefaction potential. Computer analyses successfully matched the measured response and suggest that the drains could be effective for earthquake events
Novel morphologic and genetic analysis of cancer cells in a 3D microenvironment identifies STAT3 as a regulator of tumor permeability barrier function
Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance. © 2015 American Association for Cancer Research1771sciescopu
Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function
Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance. © 2015 American Association for Cancer Research.