2,186 research outputs found

    Generalized f(R,Ï•,X)f(R,\phi,X) gravity and the late-time cosmic acceleration

    Get PDF
    High-precision observational data have confirmed with startling evidence that the Universe is currently undergoing a phase of accelerated expansion. This phase, one of the most important and challenging current problems in cosmology, represents a new imbalance in the governing gravitational equations. Historically, physics has addressed such imbalances by either identifying sources that were previously unaccounted for, or by altering the gravitational theory. Several candidates, responsible for this expansion, have been proposed in the literature, in particular, dark energy models and modified gravity models, amongst others. Outstanding questions are related to the nature of this so-called "dark energy" that is driving this acceleration, and whether it is due to the vacuum energy or a dynamical field. On the other hand, the late-time cosmic acceleration may be due to modifications of General Relativity. In this work we explore a generalised modified gravity theory, namely f(R,Ï•,X)f(R,\phi,X) gravity, where RR is the Ricci scalar, Ï•\phi is a scalar field, and XX is a kinetic term. This theory contains a wide range of dark energy and modified gravity models. We considered specific models and applications to the late-time cosmic acceleration.Comment: 13 pages, 1 figure; slightly revised version, displayed name corrected. arXiv admin note: text overlap with arXiv:1412.086

    Hints against the cold and collisionless nature of dark matter from the galaxy velocity function

    Get PDF
    The observed number of dwarf galaxies as a function of rotation velocity is significantly smaller than predicted by the standard model of cosmology. This discrepancy cannot be simply solved by assuming strong baryonic feedback processes, since they would violate the observed relation between maximum circular velocity (vmaxv_{\rm max}) and baryon mass of galaxies. A speculative but tantalising possibility is that the mismatch between observation and theory points towards the existence of non-cold or non-collisionless dark matter (DM). In this paper, we investigate the effects of warm, mixed (i.e warm plus cold), and self-interacting DM scenarios on the abundance of dwarf galaxies and the relation between observed HI line-width and maximum circular velocity. Both effects have the potential to alleviate the apparent mismatch between the observed and theoretical abundance of galaxies as a function of vmaxv_{\rm max}. For the case of warm and mixed DM, we show that the discrepancy disappears, even for luke-warm models that evade stringent bounds from the Lyman-α\alpha forest. Self-interacting DM scenarios can also provide a solution as long as they lead to extended (≳1.5\gtrsim 1.5 kpc) dark matter cores in the density profiles of dwarf galaxies. Only models with velocity-dependent cross sections can yield such cores without violating other observational constraints at larger scales.Comment: Matches published versio

    SN 2016iet: The Pulsational or Pair Instability Explosion of a Low Metallicity Massive CO Core Embedded in a Dense Hydrogen-Poor Circumstellar Medium

    Full text link
    We present optical photometry and spectroscopy of SN 2016iet, an unprecedented Type I supernova (SN) at z=0.0676z=0.0676 with no obvious analog in the existing literature. The peculiar light curve has two roughly equal brightness peaks (≈−19\approx -19 mag) separated by 100 days, and a subsequent slow decline by 5 mag in 650 rest-frame days. The spectra are dominated by emission lines of calcium and oxygen, with a width of only 34003400 km s−1^{-1}, superposed on a strong blue continuum in the first year, and with a large ratio of L[Ca II]/L[O I]≈4L_{\rm [Ca\,II]}/L_{\rm [O\,I]}\approx 4 at late times. There is no clear evidence for hydrogen or helium associated with the SN at any phase. We model the light curves with several potential energy sources: radioactive decay, central engine, and circumstellar medium (CSM) interaction. Regardless of the model, the inferred progenitor mass near the end of its life (i.e., CO core mass) is ≳55\gtrsim 55 M⊙_\odot and up to 120120 M⊙_\odot, placing the event in the regime of pulsational pair instability supernovae (PPISNe) or pair instability supernovae (PISNe). The models of CSM interaction provide the most consistent explanation for the light curves and spectra, and require a CSM mass of ≈35\approx 35 M⊙_\odot ejected in the final decade before explosion. We further find that SN 2016iet is located at an unusually large offset (16.516.5 kpc) from its low metallicity dwarf host galaxy (Z≈0.1Z\approx 0.1 Z⊙_\odot, M≈108.5M\approx 10^{8.5} M⊙_\odot), supporting the PPISN/PISN interpretation. In the final spectrum, we detect narrow Hα\alpha emission at the SN location, likely due to a dim underlying galaxy host or an H II region. Despite the overall consistency of the SN and its unusual environment with PPISNe and PISNe, we find that the inferred properties of SN\,2016iet challenge existing models of such events.Comment: 26 Pages, 17 Figures, Submitted to Ap

    Another baryon miracle? Testing solutions to the 'missing dwarfs' problem

    Get PDF
    The dearth of dwarf galaxies in the local universe is hard to reconcile with the large number of low mass haloes expected within the concordance Λ\LambdaCDM paradigm. In this paper we perform a systematic evaluation of the uncertainties affecting the measurement of DM halo abundance using galaxy kinematics. Using a large sample of dwarf galaxies with spatially resolved kinematic data we derive a correction to obtain the observed abundance of galaxies as a function of their halo maximum circular velocity from the line-of-sight velocity function in the Local Volume. This estimate provides a direct means of comparing the predictions of theoretical models and simulations (including nonstandard cosmologies and novel galaxy formation physics) to the observational constraints. The new "galactic VmaxV_{max}" function is steeper than the line-of-sight velocity function but still shallower than the theoretical CDM expectation, showing that some unaccounted physical process is necessary to reduce the abundance of galaxies and/or drastically modify their density profiles compared to CDM haloes. Using this new galactic VmaxV_{max} function, we investigate the viability of baryonic solutions such as feedback-powered outflows and photoevaporation of gas from an ionising radiation background. At the 3-σ\sigma confidence level neither energetic feedback nor photoevaporation are effective enough to reconcile the disagreement. In the case of maximum baryonic effects, the theoretical estimate still deviates significantly from the observations for Vmax<60V_{max} < 60 km/s. CDM predicts at least 1.8 times more galaxies with Vmax=50V_{max} = 50 km/s and 2.5 times more than observed at 3030 km/s. Recent hydrodynamic simulations seem to resolve the discrepancy but disagree with the properties of observed galaxies with resolved kinematics. (abridged)Comment: 17 pages, 22 figures; major revisions include clarification of the method, expanded comparison with simulations with a new figure, analysis of uncertainties in model as well as pressure support corrections, and a new table with nomenclatur

    Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming

    Get PDF
    Components of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC. The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their therapeutic potential in lung cancer is not well established. Here we aimed to determine the possible therapeutic effects of azacytidine and SAHA (A/S) alone or in combination with GC plus RA (GC/RA) in lung cancers with either BRG1 inactivation or MYC amplification. In vitro, responses to GC/RA treatment were more effective in MYC-amplified cells. These effects were mediated by BRG1 and involved a reprogramming towards prodifferentiation gene expression signatures and downregulation of MYC. In MYC-amplified cells, administration of GC/RA enhanced the cell growth inhibitory effects of A/S which, in turn, accentuated the prodifferentiation features promoted by GC/RA. Finally, these treatments improved overall survival of mice orthotopically implanted with MYC-amplified, but not BRG1-mutant, cells and reduced tumor cell viability and proliferation. We propose that the combination of epigenetic treatments with retinoids and corticoids of MYC-driven lung tumors constitute a strategy for therapeutic intervention in this otherwise incurable disease

    Canine circovirus: An emerging or an endemic undiagnosed enteritis virus?

    Get PDF
    Canine Circovirus (CanineCV) belongs to the family Circoviridae. It is an emerging virus described for the first time in 2011; since then, it has been detected in different countries and can be defined as worldwide distribution virus. CanineCV infects domestic and wild canids and is mainly related to hemorrhagic enteritis in canines. However, it has been identified in fecal samples from apparently healthy animals, where in most cases it is found in coinfection with other viral agents such as the canine parvovirus type-2 (CPV). The estimated prevalence/frequency of CanineCV has been variable in the populations and countries where it has been evaluated, reaching from 1 to 30%, and there are still many concepts to define the epidemiological characteristics of the virus. The molecular characterization and phylo-evolutive analyses that allow to postulate the wild origin and intercontinental distribution of the virus. This review focuses on the importance on continuing research and establish surveillance systems for this emerging virus

    NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas

    Get PDF
    It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster-rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity of L V,gal ≈ 6 × 107 L ⊙ (M ⋆ ≈ 1.2 × 108 M ⊙) and a total globular cluster luminosity of L V,GCs ≈ 7.6 × 106 L ⊙, we find that the clusters currently comprise ∼13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no normal low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today

    Meshless electrophysiological modeling of cardiac resynchronization therapy—benchmark analysis with finite-element methods in experimental data

    Get PDF
    Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution). © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    • …
    corecore