1,565 research outputs found
Barriers to mental health service use among distressed family caregivers of lung cancer patients
Although family caregivers of patients with lung and other cancers show high rates of psychological distress, they underuse mental health services. This qualitative study aimed to identify barriers to mental health service use among 21 distressed family caregivers of lung cancer patients. Caregivers had not received mental health services during the patient's initial months of care at a comprehensive cancer centre in New York City. Thematic analysis of interview data was framed by Andersen's model of health service use and Corrigan's stigma theory. Results of our analysis expand Andersen's model by providing a description of need variables (e.g. psychiatric symptoms), enabling factors (e.g. finances), and psychosocial factors associated with caregivers' non-use of mental health services. Regarding psychosocial factors, caregivers expressed negative perceptions of mental health professionals and a desire for independent management of emotional concerns. Additionally, caregivers perceived a conflict between mental health service use and the caregiving role (e.g. prioritising the patient's needs). Although caregivers denied stigma associated with service use, their anticipated negative self-perceptions if they were to use services suggest that stigma may have influenced their decision to not seek services. Findings suggest that interventions to improve caregivers' uptake of mental health services should address perceived barriers
Electromechanical forces acting on bio-membranes in external electric fields
Membranes of microorganisms stressed with electric field can be deformed and ruptured due to unbalanced electro-mechanical forces. The paper provides an analytical analysis of the forces acting on bio-membranes in liquid and gaseous environment. This model can help in optimisation and further development of novel field and plasma based decontamination methods
Nonrenormalization of Flux Superpotentials in String Theory
Recent progress in understanding modulus stabilization in string theory
relies on the existence of a non-renormalization theorem for the 4D
compactifications of Type IIB supergravity which preserve N=1 supersymmetry. We
provide a simple proof of this non-renormalization theorem for a broad class of
Type IIB vacua using the known symmetries of these compactifications, thereby
putting them on a similar footing as the better-known non-renormalization
theorems of heterotic vacua without fluxes. The explicit dependence of the
tree-level flux superpotential on the dilaton field makes the proof more subtle
than in the absence of fluxes.Comment: 16 pages, no figures. Final version, to appear in JHEP. Arguments for
validity of R-symmetry made more explicit. Minor extra comments and
references adde
Probing Disordered Substrates by Imaging the Adsorbate in its Fluid Phase
Several recent imaging experiments access the equilibrium density profiles of
interacting particles confined to a two-dimensional substrate. When these
particles are in a fluid phase, we show that such data yields precise
information regarding substrate disorder as reflected in one-point functions
and two-point correlations of the fluid. Using Monte Carlo simulations and
replica generalizations of liquid state theories, we extract unusual two-point
correlations of time-averaged density inhomogeneities induced by disorder.
Distribution functions such as these have not hitherto been measured but should
be experimentally accessible.Comment: 10 pages revtex 4 figure
An experimental and analytical study of plasma closing switches filled with environmentally friendly gases
In recent years there has been a desire within the pulsed power community to find potential alternative gases to sulphur hexafluoride (SF6) for use within pulsed power systems. Within plasma closing switches (PCSs), the desire to use environmentally friendly gases has come as a result of environmental concerns over the emissions of currently used gases into the atmosphere and contributing to the global warming problem. One of the main issues in finding a suitable replacement gas or gases for use in PCSs is that the performance characteristics of a switch filled with an alternative gas or gas mixture should be comparable to the performance characteristics of conventional SF6-filled switches. The research presented in this paper is an expansion of previous work conducted and forms an experimental and analytical evaluation of breakdown characteristics in two commonly used PCS topologies (a two-electrode self-breakdown switch and a field distortion switch) when filled with different gases (air, oxygen-nitrogen mixtures, argon oxygen mixture, nitrogen and carbon dioxide) over a range of pressures from 0.1 MPa to 0.45 MPa and for a range of inter-electrode distances
Stroke Caregiver Outcomes from the Telephone Assessment and Skill-Building Kit (TASK)
Purpose: Stroke caregivers often express the need for information about stroke and assistance with stroke-related care in the early discharge period. The Telephone Assessment and Skill-Building Kit (TASK) is an 8-week program that addresses caregiver needs. This study explored the efficacy of the TASK program in improving stroke caregiver outcomes. Method: Guided by a conceptual model, 6 outcomes (optimism, task difficulty, threat appraisal, depressive symptoms, life changes, general health perceptions) were measured in 40 caregivers randomized to the TASK (n = 21) or an attention control group (n = 19). Data were analyzed using analysis of covariance (ANCOVA), controlling for baseline scores and minutes spent with the nurse. Results: Significant increases in optimism at 4 weeks, 8 weeks, and 12 weeks were found, with medium effect sizes for the TASK group relative to the control group (p < .05). Significant improvements in task difficulty at 4 weeks, and threat appraisal at both 8 weeks and 12 weeks were also found (p < .05). Conclusion: Caregivers receiving the TASK intervention improved in optimism, task difficulty, and threat appraisal. Further testing of an enhanced version of the TASK program is warranted, with attention directed toward more distal stroke caregiver outcomes
Fluorescence detection of hydroxyl radicals in water produced by atmospheric pulsed discharges
It has been proven that hydroxyl (OH) radicals can be generated by streamer discharges across water surfaces under ambient atmospheric conditions. Hydroxyl radicals have the highest oxidation capability amongst all oxygen-based reactive species, thus OH play an important role in oxidation of organic molecules and the bactericidal effects of plasma discharges. In this study, generation of hydroxyl radicals in water by pulsed streamer discharges was investigated. Terephthalic acid was used as a chemical probe as this acid is converted into 2-hydroxyterephthalic acid (HTA) by chemical reaction with OH radicals. The concentration of OH radicals was quantified by measuring the fluorescence light intensity generated by HTA molecules in water solutions. Both positive and negative pulsed discharges with different voltage levels were tested. Two different types of sample holder – non-conductive plastic dishes, and dishes lined with conductive aluminum foil – were used in order to investigate the effect of the discharge propagation path on the efficiency of OH production. The efficiency of OH production was measured as a function of: the distance between the needle electrode and the water surface; the magnitude and polarity of HV energization; and the total delivered charge. The obtained results will help in optimization of non-thermal plasma systems for chemical and biological decontamination
Randomly Evolving Idiotypic Networks: Structural Properties and Architecture
We consider a minimalistic dynamic model of the idiotypic network of
B-lymphocytes. A network node represents a population of B-lymphocytes of the
same specificity (idiotype), which is encoded by a bitstring. The links of the
network connect nodes with complementary and nearly complementary bitstrings,
allowing for a few mismatches. A node is occupied if a lymphocyte clone of the
corresponding idiotype exists, otherwise it is empty. There is a continuous
influx of new B-lymphocytes of random idiotype from the bone marrow.
B-lymphocytes are stimulated by cross-linking their receptors with
complementary structures. If there are too many complementary structures,
steric hindrance prevents cross-linking. Stimulated cells proliferate and
secrete antibodies of the same idiotype as their receptors, unstimulated
lymphocytes die.
Depending on few parameters, the autonomous system evolves randomly towards
patterns of highly organized architecture, where the nodes can be classified
into groups according to their statistical properties. We observe and describe
analytically the building principles of these patterns, which allow to
calculate number and size of the node groups and the number of links between
them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table
Theory of continuum percolation III. Low density expansion
We use a previously introduced mapping between the continuum percolation
model and the Potts fluid (a system of interacting s-states spins which are
free to move in the continuum) to derive the low density expansion of the pair
connectedness and the mean cluster size. We prove that given an adequate
identification of functions, the result is equivalent to the density expansion
derived from a completely different point of view by Coniglio et al. [J. Phys A
10, 1123 (1977)] to describe physical clustering in a gas. We then apply our
expansion to a system of hypercubes with a hard core interaction. The
calculated critical density is within approximately 5% of the results of
simulations, and is thus much more precise than previous theoretical results
which were based on integral equations. We suggest that this is because
integral equations smooth out overly the partition function (i.e., they
describe predominantly its analytical part), while our method targets instead
the part which describes the phase transition (i.e., the singular part).Comment: 42 pages, Revtex, includes 5 EncapsulatedPostscript figures,
submitted to Phys Rev
Motional Squashed States
We show that by using a feedback loop it is possible to reduce the
fluctuations in one quadrature of the vibrational degree of freedom of a
trapped ion below the quantum limit. The stationary state is not a proper
squeezed state, but rather a ``squashed'' state, since the uncertainty in the
orthogonal quadrature, which is larger than the standard quantum limit, is
unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum
Correlations and Fluctuations" of J. Opt.
- …
