460 research outputs found

    Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides

    Full text link
    A generalized Fermi-Bose mapping method is used to determine the exact ground states of several models of mixtures of strongly interacting ultracold gases in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). We detail the case of a Bose-Fermi mixture with TG boson-boson (BB) and boson-fermion (BF) interactions. Exact results are given for density profiles in a harmonic trap, single-particle density matrices, momentum distributions, and density-density correlations. Since the ground state is highly degenerate, we analyze the splitting of the ground manifold for large but finite BB and BF repulsions.Comment: Revised to discuss splitting of degenerate ground manifold for large but finite BB and BF repulsions; accepted by PR

    Bose-Fermi variational theory of the BEC-Tonks crossover

    Full text link
    A number-conserving hybrid Bose-Fermi variational theory is developed and applied to investigation of the BEC-Tonks gas crossover in toroidal and long cylindrical traps of high aspect ratio, where strong many-body correlations and condensate depletion occur.Comment: 4 pages RevTeX including 2 figures, uses epsfig. Submitted to Phys. Rev. Let

    Bosonization, Pairing, and Superconductivity of the Fermionic Tonks-Girardeau Gas

    Full text link
    We determine some exact static and time-dependent properties of the fermionic Tonks-Girardeau (FTG) gas, a spin-aligned one-dimensional Fermi gas with infinitely strongly attractive zero-range odd-wave interactions. We show that the two-particle reduced density matrix exhibits maximal off-diagonal long-range order, and on a ring an FTG gas with an even number of atoms has a highly degenerate ground state with quantization of Coriolis rotational flux and high sensitivity to rotation and to external fields and accelerations. For a gas initially under harmonic confinement we show that during an expansion the momentum distribution undergoes a "dynamical bosonization", approaching that of an ideal Bose gas without violating the Pauli exclusion principle.Comment: v3: 4 pages, 2 figures, revtex4. Section on the fermionic TG gas on a ring revised, emphasizing degeneracy of ground state for even N and resultant high sensitivity to external fields. Submitted to PR

    Interference of a Tonks-Girardeau Gas on a Ring

    Full text link
    We study the quantum dynamics of a one-dimensional gas of impenetrable bosons on a ring, and investigate the interference that results when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Large visibility interference fringes arise when the wavevector of the optical dipole grating is larger than the effective Fermi wavevector of the initial gas.Comment: 7 pages, 3 figure

    Three-dimensional quasi-Tonks gas in a harmonic trap

    Full text link
    We analyze the macroscopic dynamics of a Bose gas in a harmonic trap with a superimposed two-dimensional optical lattice, assuming a weak coupling between different lattice sites. We consider the situation in which the local chemical potential at each lattice site can be considered as that provided by the Lieb-Liniger solution. Due to the weak coupling between sites and the form of the chemical potential, the three-dimensional ground-state density profile and the excitation spectrum acquire remarkable properties different from both 1D and 3D gases. We call this system a quasi-Tonks gas. We discuss the range of applicability of this regime, as well as realistic experimental situations where it can be observed.Comment: 4 pages, 3 figures, misprints correcte

    Low-density, one-dimensional quantum gases in a split trap

    Full text link
    We investigate degenerate quantum gases in one dimension trapped in a harmonic potential that is split in the centre by a pointlike potential. Since the single particle eigenfunctions of such a system are known for all strengths of the central potential, the dynamics for non-interacting fermionic gases and low-density, strongly interacting bosonic gases can be investigated exactly using the Fermi-Bose mapping theorem. We calculate the exact many-particle ground-state wave-functions for both particle species, investigate soliton-like solutions, and compare the bosonic system to the well-known physics of Bose gases described by the Gross-Pitaevskii equation. We also address the experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure

    Super Tonks-Girardeau state in an attractive one-dimensional dipolar gas

    Full text link
    The ground state of a one-dimensional (1D) quantum gas of dipoles oriented perpendicular to the longitudinal axis, with a strong 1/x^3 repulsive potential, is studied at low 1D densities nn. Near contact the dependence of the many-body wave function on the separation x_{jl} of two particles reduces to a two-body wave function \Psi_{rel}(x_{jl}). Immediately after a sudden rotation of the dipoles so that they are parallel to the longitudinal axis, this wave function will still be that of the repulsive potential, but since the potential is now that of the attractive potential, it will not be stationary. It is shown that as nd^2 -> 0 the rate of change of this wave function approaches zero. It follows that for small values of nd^2, this state is metastable and is an analog of the super Tonks-Girardeau state of bosons with a strong zero-range attraction. The dipolar system is equivalent to a spinor Fermi gas with spin zz components \sigma_{\uparrow}=\perp (perpendicular to the longitudinal axis) and \sigma_{\downarrow}=|| (parallel to the longitudinal axis). A Fermi-Fermi mapping from spinor to spinless Fermi gas followed by the standard 1960 Fermi-Bose mapping reduces the Fermi system to a Bose gas. Potential experiments realizing the sudden spin rotation with ultracold dipolar gases are discussed, and a few salient properties of these states are accurately evaluated by a Monte Carlo method.Comment: 5 pages, 2 figures, revtex4. Published versio

    One-dimensional non-interacting fermions in harmonic confinement: equilibrium and dynamical properties

    Full text link
    We consider a system of one-dimensional non-interacting fermions in external harmonic confinement. Using an efficient Green's function method we evaluate the exact profiles and the pair correlation function, showing a direct signature of the Fermi statistics and of the single quantum-level occupancy. We also study the dynamical properties of the gas, obtaining the spectrum both in the collisionless and in the collisional regime. Our results apply as well to describe a one-dimensional Bose gas with point-like hard-core interactions.Comment: 11 pages, 5 figure

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio

    Pfaffian-like ground state for 3-body-hard-core bosons in 1D lattices

    Full text link
    We propose a Pfaffian-like Ansatz for the ground state of bosons subject to 3-body infinite repulsive interactions in a 1D lattice. Our Ansatz consists of the symmetrization over all possible ways of distributing the particles in two identical Tonks-Girardeau gases. We support the quality of our Ansatz with numerical calculations and propose an experimental scheme based on mixtures of bosonic atoms and molecules in 1D optical lattices in which this Pfaffian-like state could be realized. Our findings may open the way for the creation of non-abelian anyons in 1D systems
    • …
    corecore