4,516 research outputs found

    Black Hole Production at the Large Hadron Collider

    Full text link
    Black hole production at the Large Hadron Collider (LHC) is an interesting consequence of TeV-scale gravity models. The predicted values, or lower limits, for the fundamental Planck scale and number of extra dimensions will depend directly on the accuracy of the black hole production cross-section. We give a range of lower limits on the fundamental Planck scale that could be obtained at LHC energies. In addition, we examine the effects of parton electric charge on black hole production using the trapped-surface approach of general relativity. Accounting for electric charge of the partons could reduce the black hole cross-section by one to four orders of magnitude at the LHC.Comment: CTP Symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives at the British University in Egypt 11-14 March 200

    An Antipyretic Guideline for Pediatric Patients in an Urgent Care Setting.

    Get PDF
    D.N.P. Thesis. University of Hawaiʻi at Mānoa 2018

    Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting

    Get PDF
    A high-throughput method has been developed using a commercial piezoelectric inkjet printer for synthesis and characterization of mixed-metal oxide photoelectrode materials for water splitting. The printer was used to deposit metal nitrate solutions onto a conductive glass substrate. The deposited metal nitrate solutions were then pyrolyzed to yield mixed-metal oxides that contained up to eight distinct metals. The stoichiometry of the metal oxides was controlled quantitatively, allowing for the creation of vast libraries of novel materials. Automated methods were developed to measure the open-circuit potentials (Eoc), short-circuit photocurrent densities (Jsc), and current density vs. applied potential (J–E) behavior under visible light irradiation. The high-throughput measurement of Eoc is particularly significant because open-circuit potential measurements allow the interfacial energetics to be probed regardless of whether the band edges of the materials of concern are above, close to, or below the values needed to sustain water electrolysis under standard conditions. The Eoc measurements allow high-throughput compilation of a suite of data that can be associated with the composition of the various materials in the library, to thereby aid in the development of additional screens and to form a basis for development of theoretical guidance in the prediction of additional potentially promising photoelectrode compositions

    Noncommutative geometry inspired black holes in higher dimensions at the LHC

    Full text link
    When embedding models of noncommutative geometry inspired black holes into the peridium of large extra dimensions, it is natural to relate the noncommutativity scale to the higher-dimensional Planck scale. If the Planck scale is of the order of a TeV, noncommutative geometry inspired black holes could become accessible to experiments. In this paper, we present a detailed phenomenological study of the production and decay of these black holes at the Large Hadron Collider (LHC). Noncommutative inspired black holes are relatively cold and can be well described by the microcanonical ensemble during their entire decay. One of the main consequences of the model is the existence of a black hole remnant. The mass of the black hole remnant increases with decreasing mass scale associated with noncommutative and decreasing number of dimensions. The experimental signatures could be quite different from previous studies of black holes and remnants at the LHC since the mass of the remnant could be well above the Planck scale. Although the black hole remnant can be very heavy, and perhaps even charged, it could result in very little activity in the central detectors of the LHC experiments, when compared to the usual anticipated black hole signatures. If this type of noncommutative inspired black hole can be produced and detected, it would result in an additional mass threshold above the Planck scale at which new physics occurs.Comment: 21 pages, 7 figure

    Microcanonical treatment of black hole decay at the Large Hadron Collider

    Full text link
    This study of corrections to the canonical picture of black hole decay in large extra dimensions examines the effects of back-reaction corrected and microcanonical emission at the LHC. We provide statistical interpretations of the different multiparticle number densities in terms of black hole decay to standard model particles. Provided new heavy particles of mass near the fundamental Planck scale are not discovered, differences between these corrections and thermal decay will be insignificant at the LHC.Comment: small additions and clarifications, format for J. Phys.

    Teleportation with a uniformly accelerated partner

    Get PDF
    In this work, we give a description of the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in non inertial frames.Comment: 7 pages with 4 figures (in revtex4

    Grover's Quantum Search Algorithm for an Arbitrary Initial Mixed State

    Full text link
    The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states carrying high entropy, the generalized Grover algorithm is considerably faster than any classical algorithm.Comment: 4 pages. See http://www.cs.technion.ac.il/~danken/MSc-thesis.pdf for extended discussio

    Virus protein of mosaic disease of tobacco

    Get PDF
    Publication authorized February 9, 1939.Digitized 2007 AES.Includes bibliographical references (page 12)

    Spin decoherence by spacetime curvature

    Full text link
    A decoherence mechanism caused by spacetime curvature is discussed. The spin state of a particle is shown to decohere if only the particle moves in a curved spacetime. In particular, when a particle is near the event horizon of a black hole, an extremely rapid spin decoherence occurs for an observer who is static in a Killing time, however slow the particle's motion is.Comment: 13 pages, 2 figure
    • 

    corecore