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Teleportation with a uniformly accelerated partner
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In this work, we give a description of the process of teleportation between Alice in an inertial
frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation
is reduced due to Unruh radiation in Rob’s frame. In so far as teleportation is a measure of
entanglement, our results suggest that quantum entanglement is degraded in non inertial frames.

I. INTRODUCTION

The large and rapidly growing field of quantum in-
formation science is a vindication of Landauer’s insis-
tence that we recognize the physical basis of informa-
tion storage, processing and communication[1]. Quan-
tum information science is based on the discovery that
there are physical states of a quantum system which en-
able tasks that cannot be accomplished in a classical
world. An important example of such a task is quantum
teleportation[2]. Teleportation, like most recent ideas in
quantum information science, is based squarely on the
physical properties of non-relativistic quantum systems.

Recognizing that information science must be
grounded in our understanding of the physical world, one
is prompted to ask how relativistic considerations might
impact tasks that rely on quantum entangled states.
There has recently been some interest in this question
for inertial frames. While Lorentz transformations can-
not change the overall quantum entanglement of a bi-
partite state[3, 4], they can change which properties of
the local systems are entangled. In particular, Gingrich
and Adami[5] showed that under a Lorentz transforma-
tion the initial entanglement of just the spin degrees of
freedom of two spin half particles can be transferred into
an entanglement between both the spin and momentum
degrees of freedom. Physically this means that detectors,
which respond only to spin degrees of freedom, will see a
reduction of entanglement when they are moving at large
uniform velocity. Put simply, the nature of the entangle-
ment resource depends on the inertial reference frame of
the detectors. A similar result holds for photons[6]

In this paper however, we wish to consider quantum
entanglement in non-inertial frames. In order to make
the discussion physically relevant, we concentrate on a
particular quantum information task; quantum telepor-
tation. We will show that the fidelity of teleportation is
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compromised when the receiver is making observations
in a uniformly accelerated frame. This is quite distinct
from any reduction in fidelity through the Lorentz mixing
of degrees of freedom noted by Gingrich and Adami[5].
Rather it is direct consequence of the existence of Unruh-
Hawking radiation for accelerated observers. In so far as
teleportation fidelity is an operational measure of quan-
tum entanglement, our results suggest that quantum en-
tanglement may not be preserved in non-inertial frames.

II. UNIFORMLY ACCELERATED OBSERVERS

A. Preliminaries

Let Alice be an inertial Minkowski observer with zero
velocity, located at the point P as shown in Fig.(1a).
Another inertial observer Bob is travelling with posi-
tive constant velocity v < c in the z direction with re-
spect to Alice, and their positions are coincident at the
point P whereupon they each share one part of an en-
tangled Bell state. The textbook teleportation protocol
[7] proceeds as usual with Alice sending the results of
her measurement to Bob at the point Q, say by photons,
so that Bob will eventually receive them, and be able
to rotate his half of the shared entangled state into the
state |ψ〉M = α|0〉M +β|1〉M that Alice wishes to teleport
(where the M subscripts denotes a Minkowski state).

The situation is drastically different for the observer
Rob who travels with constant acceleration a in the z di-
rection with respect to Alice. Alice’s and Rob’s position
coincide at the point P where again they instantaneously
share an entangled Bell state, of which Rob takes one
qubit on his journey. In Minkowski coordinates Rob’s
world line takes the form

tR(τ) = a−1 sinhaτ , zR(τ) = a−1 coshaτ , (1)

where τ is the proper time along the world line. Rob’s
trajectory is a hyperbola in Minkowski space bounded by
the light-like asymptotes H− and H+ which represents
Rob’s past and future horizons with τ = −∞ and τ = ∞
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FIG. 1: (a) Minkowski diagram for the case of Alice (dark
gray arrow) stationary and Bob (light gray arrow) travelling
at constant velocity. Alice and Bob share an entangled Bell
state at the event P (see text). Alice can complete the tele-
portation protocol by sending classical signals to Bob at a
representative event Q. The entanglement fidelity of a state Φ
is unaltered if viewed from either Alice’s or Bob’s rest frame.
(b) Alice (dark gray arrow) is again stationary, while Rob
(dark gray hyperbola) undergoes constant acceleration. Alice
and Rob share an entangled Bell state at the common point
P . The light-like lines H− and H+ form past and future par-
ticle horizon corresponding to Rob’s proper times tR = −∞
and tR = +∞ respectively. At the event Q Alice crosses H+

(in her finite proper time tA), and can no longer communicate
with Rob. Bob, however, can still send signals to Alice across
H+.

respectively. The shaded region in the right half of the
Minkowski plane in Fig.(1b) where Rob is constrained to
move is called the Right Rindler Wedge (RRW) and is
labelled with the roman numeral I. In general, a point
in the RRW can be labelled by the Rindler coordinates
(η, ζ) which are related to Minkowski coordinates (t, z)
by

t = ζ sinh η, z = ζ cosh η, (2)

where −∞ < η < ∞ and 0 < ζ < ∞. Lines of constant
ζ are hyperbolas within the RRW and lines of constant
η are straight lines through the origin. The past hori-
zon H− corresponds to ζ = 0, η = −∞ while the future
horizon H+ corresponds to ζ = 0, τ = ∞.

With the same coordinate transformation given in
Eq.(2), the region −∞ < ζ < 0 and −∞ < η < ∞ is
called the Left Rindler Wedge (LRW) and is labeled by
the roman numeral II. In this region, the lines of con-
stant η run in the opposite sense than in I. Region I
is causally disconnected from II and no signal from one
region can propagate into the other region. The metric
for Minkowski space is given by

ds2 = dz2 − dt2 = dζ2 − ζ2dη2. (3)

It is well appreciated now [8, 9, 10, 11, 12, 13] that the
quantization of fields in Minkowski and Rindler coordi-
nates are inequivalent, implying that the RRW vacuum

seen by Rob |0〉I is different than the Minkowski vacuum
seen by Alice |0〉M . The celebrated result of Davies and
Unruh [9] is that the Minkowski vacuum can be written
in terms of the region I and II states (for a scalar field)
as

|0〉M =
∏

Ω,~k⊥

(

1 − e−2πΩ
)−1/2

∞
∑

n=0

e−2πΩn|nΩ,~k⊥

〉I⊗|nΩ,−~k⊥

〉II ,

(4)
where Ω ≡ ωR/(a/c) with ωR the frequency of a Rindler
particle. The Minkowski vacuum as given by Eq.(4) is
a two-mode squeezed state [14] which for each mode

(Ω, ~k⊥) has the general form

|0〉M ∼ 1

cosh r

∞
∑

n=0

tanhn r |n〉I ⊗ |n〉II , (5)

with

cosh r =
(

1 − e−2πΩ
)−1/2

, sinh r = e−πΩ
(

1 − e−2πΩ
)−1/2

.
(6)

Note that |0〉M can be written as S(r) |0〉I ⊗ |0〉II where
the two-mode squeezing operator is given by S(r) ≡
exp[r (bIbII − b†Ib

†
II)] [14]. The evolution of a Minkowski

state vector is affected by the unitary operator e−iHM t

where for a single mode (ignoring transverse momen-

tum degrees of freedom) HM = h̄ωMa†MaM . For Rindler
states the evolution proceeds via e−iHRτ where

HR ≡ HI −HII (7)

HI = h̄ωRb
†
IbI , HII = h̄ωRb

†
IIbII . (8)

The minus sign in Eq.(8) stems from the sense of time
essentially flowing ”backwards” in region II (i.e. for a <
0, η(τ) = a τ is a decreasing function of τ).

For Rob, who lives in region I, all his observables can

be written solely in terms of bI and b†I operators. Since he
is causally disconnected from region II, Rob must reduce
any density matrix describing both Rindler wedges to
one appropriate to region I only, by tracing out over
region II. Thus he perceives the Minkowksi vacuum as
a thermal state,

ρ
(I)
|0〉M

≡ Tr(|0〉M 〈0|) =
(

1 − e−2πΩ
)

∞
∑

n=0

e−2πΩn|n〉I〈n|.

(9)
The exponential terms can be written as
exp(−h̄ωR/kBTU ) with the Unruh temperature TU

is given by (in units of kB = 1)

TU ≡ h̄a

2πc
=

h̄

2πc ζ0
, (10)

where ζ(τ) = ζ0 = 1/a is the constant Rindler position
coordinate of Rob’s stationary world line.
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B. Relationship between Minkowski and Rindler

modes

We will use two-photon states of the electromagnetic
field [15] for the Bell state and so must consider Fock
states, other than the vacuum state, for the Rindler ob-
server. This is easily done by a consideration of how the
creation and anihilation operators transform. The rela-
tionship between the Minkowski and Rindler modes is
given by the Bogoliubov transformation

b
(σ)

Ω,~k⊥

=

∫

d3k′
(

αα
(σ)
kk′ak′ + β

(σ)
kk′a

†
k′

)

(11)

where the notation of [11] has been adopted, namely σ =

(+,−) refers to region I and II respectively, k = (Ω, ~k⊥)

and k′ = (~k⊥, k
3). Modes in Minkowski space are speci-

fied by the wave vector ~k ≡ (~k⊥, k
3) where ~k⊥ = (k1, k2)

are the components of the momentum perpendicular to
the direction of Rob’s acceleration. The Minkowski fre-
quency is given by ω~k =

√

m2 + ~k2. Modes in Rindler
space are specified by a positive energy Rindler frequency

Ω and ~k⊥. The Bogoliubov transformation can be put
into a more transparent form by introducing the Un-

ruh modes d
(σ)

Ω,~k⊥

and d
(σ)†

Ω,~k⊥

. The Unruh modes arise by

considering the fourier transform of the usual Minkowski

plane waves [(2π)3 2ω~k]−1/2 exp(~k·~x−ω~kt) in terms of the
Rindler proper time τ [13]. These complete, orthonormal
set of modes exits over all of Minkowski space and can be
”patched together” to form the two complete orthonor-
mal set of Rindler modes which have finite support in
either region I or region II. The physical significance of
the Unruh modes is that they diagonalize the generator
of Lorentz boosts [11], which in Minkowski coordinates
is given by

Mαβ =

∫

d3x(xαT 0β − xβT 0α).

The restriction of the generator of boosts in the z di-
rection to region I gives the Rindler Hamiltonian HR =
M03

∣

∣

I
.

The relationship between the Unruh modes and the
Minkowski modes is given by [11]

a~k⊥,k3 =
∑

σ

∫ ∞

0

dΩp
(σ)∗
Ω (k3)d

(σ)

Ω,~k⊥

. (12)

which can be inverted to give

d
(σ)

Ω,~k⊥

=

∫ ∞

−∞

dk3p
(σ)
Ω (k3)a~k⊥,k3 . (13)

In the above expression, the functions p
(σ)
Ω (k3) form a

complete orthonormal set and are given by

p
(σ)
Ω (k3) =

1

(2πω~k)1/2

(

ω~k + k3

ω~k − k3

)iσΩ/2

(14)

which are essentially phase factors. Since by Eq.(13)
the Unruh annihilation operator is a sum over only
Minkowski annihilation operators, it too annihilates the
Minkowski vacuum.

a~k⊥,k3 |0〉M = 0, d
(σ)

Ω,±~k⊥

|0〉M = 0. (15)

Finally, the Unruh modes are related in a natural way
to the Rindler modes through the following Bogoliubov
transformation





d
(+)

Ω,~k⊥

d
(−)†

Ω,−~k⊥



 =

[

cosh r − sinh r
− sinh r cosh r

]





b
(+)

Ω,~k⊥

b
(−)†

Ω,−~k⊥



 (16)

with the hyperbolic functions of r related to the Rindler
frequency Ω by Eq.(6). The operators b(+) and b(−) an-
nihilate the RRW vacuum |0〉+ and LRW vacuum |0〉−
respectively, and commute with each other.

By Eq.(12) we see that a given Minkowski mode of
frequency ω~k is spread over all positive Rindler frequen-
cies Ω, as a result of the Fourier transform relationship

between a~k⊥,k3 and d
(σ)

Ω,~k⊥

. We now simplify our analy-

sis by considering the effect of teleportation of the state
|ψ〉M = α|0〉M + β|1〉M by the Minkowski observer Alice
to a single Rindler mode of the RRW observer Rob. That

is, we consider only the mode (Ω, ~k⊥) in region I which is

distinct from the mode (Ω,−~k⊥) in the same region. As
such, we can consider only the σ = (+) contribution and
drop the unessential phase factors in Eq.(12). The single
Rindler mode component of the Minkowski vacuum state
we are interested is then

|0〉M → 1

cosh r

∞
∑

n=0

tanhn r|nΩ,~k⊥

〉I ⊗ |nΩ,−~k⊥

〉II . (17)

The relevant Bogoliubov transformation can now be writ-
ten as

a†~k⊥,k3
→ d

(+)†

Ω,~k⊥

= cosh r b
(+)†

Ω,~k⊥

− sinh r b
(−)

Ω,−~k⊥

. (18)

From here on we drop all the frequency and momentum
subscripts and replace the labels ± by I and II, keeping
in mind the full definitions in Eq.(17) and Eq.(18).

III. TELEPORTATION FROM A MINKOWSKI

OBSERVER TO A RINDLER OBSERVER

Let us first begin by briefly recalling the usual tele-
portation protocol, between Minkowski observers Alice
and Bob [Fig.(1a)], as given in [7]. Our two qubit en-
tangled state will be encoded as entangled Fock states
of the electromagnetic field. Alice wishes to teleport
the state |ψ〉M = α|0〉M + β|1〉M to Bob. Let Al-
ice and Bob share the entangled Bell state |β00〉M =

1/
√

2( |0〉M ⊗ |0〉M + |1〉M ⊗ |1〉M ). The input state
to the system is then |Ψ0〉M = |ψ〉M |β00〉M . Alice
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performs a CNOT gate on |ψ〉M and her portion of
|β00〉M , and then passes the first qubit of the output state
through a Hadammard gate. Upon making a joint pro-
jective measurement on her two qubits with the result
|l〉M ⊗ |m〉M with l,m = {0, 1}, the full state is pro-
jected into |l〉M ⊗ |m〉M ⊗ |φl,m〉M where Bob’s state is
given by |φlm〉M ≡ xlm|0〉M + ylm|1〉M . Here we have
defined the four possible outcomes as (x00, y00) = (α, β),
(x01, y01) = (β, α), (x10, y10) = (α,−β), and (x11, y11) =
(−β, α). After receiving the classical information {l,m}
of the result of Alice’s measurement, Bob can rotate his
qubit of the entangled state into |ψ〉M by applying the
operations Z l

M Xm
M to |φlm〉M . The fidelity of the tele-

ported state is unity in this idealized situation.
Alice now wishes to perform this same teleportation

protocol with the uniformly accelerated Rob. The calcu-
lation proceeds straightforwardly once we remember two

things. First, the states |0〉M and |1〉M = a†M |0〉M of
the initial state |Ψ0〉M associated with Rob must be ex-
panded in terms of the Rindler states |n〉I ⊗ |m〉II . This
can be accomplished by using the single mode Minkowski
vacuum as given in Eq.(17) and the Bogoliubov trans-
formation Eq.(18). Here we are imagining the situa-
tion where Rob has instantaneously accelerated to the
value a at τ = 0 at the point P in Fig.(1b) where Alice
and Rob initially share the entangle state |β00〉M . Sec-
ond, since the result of Rob’s acceleration inextricably
creates a particle horizon which keeps him causally dis-
connected from region II, his final state is produced by
tracing out over region II. Thus, since any Minkowski
Fock state is a correlated state of region I and II Fock
states, there is no hope of completely teleporting the
state |ψ〉M = α|0〉M + β|1〉M in the presence of this par-
tial trace operation by Rob. However, the best state we
might expect Rob to obtain as an end product of the
teleportation protocol would be the region I analogous
version of the Minkowski transported state |ψ〉M , namely

|ψ〉I = α|0〉I + β|1〉I . (19)

We might call this a thermally teleported state since Rob
perceives all Minkowski states through the haze of the

thermal vacuum that he moves through. If ρ
(I)
lm is Rob’s

density matrix after Alice performs the operations on her
qubits, then we can measure the fidelity of the thermally
teleported state as

F (I) ≡ TrI

(

|ψ〉I〈ψ| ρ(I)
)

= I〈ψ|ρ(I)|ψ〉I . (20)

Using Eq.(5) for |0〉M and Eq.(18) for a†M we find

|1〉M =
1

cosh2 r

∞
∑

n=0

tanhn r
√
n+ 1 |n+1〉I ⊗|n〉II . (21)

When Alice sends the result of her measurement {l,m},
which can be received by Rob, if Alice has not yet crossed
Rob’s future horizon H+, Rob’s state will be projected

into

ρ
(I)
lm ≡

∞
∑

n=0

II〈n|φlm〉M 〈φlm|n〉II

=

∞
∑

n=0

tanh2n r

cosh2 r

[(

|xlm|2 + n
|ylm|2
sinh2 r

)

|n〉I〈n|+

+
xlmy

∗
lm

cosh r

√
n+ 1 |n+ 1〉I〈n|

+
x∗lmylm

cosh r

√
n+ 1 |n〉I〈n+ 1|

]

. (22)

Note that as the acceleration becomes large i.e. r →
∞, Rob’s state is driven into the thermal vacuum state

ρ
(I)
|0〉M

of Eq.(9) and all information has been lost due to

thermalization.
Let us now compute the fidelity in Eq.(20) with the

state |φlm〉I = xlm|0〉I +ylm|1〉I with |xlm|2 + |ylm|2 = 1,
which is the penultimate state before Rob would perform
the appropriate rotation to attempt to transform his half
of the (accelerated) entangled Bell state to its final form
|ψ〉I . We obtain

F
(I)
lm = I〈φlm|ρ(I)

lm |φlm〉I

=
1

cosh2 r

[

|xlm|4 +

(

tanh2 r|xlm|2 +
|ylm|2
cosh2 r

)

|ylm|2

+ 2
|xlm|2|ylm|2

cosh r

]

, (23)

which is essentially a projection onto the {|0〉I , |1〉I} sub-

space of ρ
(I)
lm .
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FIG. 2: Averaged Fidelity 1/π
∫ π

0
dθF

(I)
lm (r, θ) over all possible

input states for xlm = cos θ, ylm = sin θ. Note that r scales
directly with the acceleration a, so that r = 0 corresponds to
a = 0.



5

In Fig.(2) we plot F
(I)
lm averaged over all possible input

states using the parameterization xlm = cos θ and ylm =
sin θ. At r = 0, corresponding to a = 0, we are back
to the case of teleportation between Alice and Bob in
Minkowski space, and the fidelity is unity. Using the
definition of Ω and r in Eq.(6) we find

tanh r = exp[−πωR/(a/c)] or

r ≈ exp[−πωR/(a/c)] for r → 0. (24)

For terrestrial experiments a = g ∼ 10m/s2 and a/c ∼
10−8 s−1 is such a small frequency, that for all frequen-
cies ωR of physical interest the fidelity is near unity with
incredible precision, (for r = 10−3 the fidelity is is unity
to within one part in 106, and this still corresponds to
unphysically large accelerations). Near the event horizon
of a black hole appreciable accelerations can be obtained
such that the reduction of the fidelity from unity could be
observed. In that case an analogous teleportation scheme
could be defined with Rob, stationary, outside the event
horizon and Alice freely falling into the hole.

In the above we have ignored the time evolution of
the states, namely that Alice’s qubits evolve according
to e−iHM t while Rob’s qubits evolve via e−iHRτ , as dis-
cussed in the previous section. A simple calculation re-
veals that only change from the above analysis is that
ylm → ylme

−iΩτ in Eq.(21). However, since the fidelity
in Eq.(23) depends only upon |ylm|2, this phase factor
does not contribute to the final result. From Rob’s point
of view, he is able to receive the result of Alice’s mea-
surement for all of his eternity, i.e 0 < τ < ∞. From
Alice’s point of view, she cross Rob’s future horizon H+

in a finite time t = c/a, after which even light signals
will not reach Rob (see point Q in Fig.(1b)). For her,
the teleportation protocol stops since she can no longer
communicate the results of her measurements to Rob.
However, for all of her eternity, i.e. 0 < t < ∞ she can
still receive persistent requests from Rob to send the in-
formation. H+ is analogous to the ”one-way membrane”
of an black hole event horizon, which Rob has ”fallen”
through.

It is of some interest to consider the reduction of
fidelity in terms of entropy. In Fig.(3) we plot the
von Neumann entropy S = −Tr(ρ log ρ) of Rob’s pre-
measurement state, post-measurement state upon learn-
ing the result of Alice’s measurement, and the vacuum
state, as a function of r (measured in bits). The pre-
measurement state is obtained from Eq.(22) by summing
(l,m) over all four possible input states, which reduces
it to a diagonal density matrix. The post-measurement
state is given by Eq.(22) with the input state to the tele-

portation protocol chosen to be |ψ〉M = 1/
√

2 (|0〉M +
|1〉M ).

For r = 0, corresponding to a = 0, Rob’s pre-
measurement state is just 1

2I2×2, half the 2-by-2 unit
matrix in the {|0〉M , |1〉M} sector (since |n〉I ≡ |n〉M in
this limit) and zero elsewhere, while the vacuum is just
the normal Minkowski vacuum. Note that Spre(0) = 1

expressing Rob’s (or here Bob’s at r = 0) complete ig-
norance of the outcome of Alices’s measurement. As r
increases all entropies increase since the thermalization
eventually drives all states to the vacuum (in the limit
r → ∞) with equally weighted states, where all informa-
tion is lost. The energy for this thermalization, of course,
comes from the work supplied by the agent causing Rob’s
acceleration.
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S
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S
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FIG. 3: Von Neumann entropies of Rob’s pre-measurement
state Spre (solid), post-measurement state Spost (dashed), and
the vacuum Svac (dotted).

Also plotted in Fig.(3) is the entropy for Rob’s post-
measurement state Spost. At r = 0 Rob (or Bob) would
absolutely know the state that was teleported to him and
thus gain 1 bit of information (the distance between the
solid and dashed curve). However, as the acceleration
increases, this information gain decreases from unity to
zero as the Unruh temperature increases. This is seen as
the solid curve in Fig.(4) which plots ∆Sgain ≡ Spre −
Spost.

Though ∆Sgain ≡ Spre − Spost appears to be levelling
out for large r in Fig.(4), it is doing so only very slowly.
Since, as mentioned above, all states are driven to the in-
finite temperature vacuum as r → ∞, these curves must
eventually merge. It is curious that they do so slowly.
The dashed curve in Fig.(4) is a 2-state model which
uses only the (normalized) {|0〉I , |1〉I} sector of Rob’s
post-measurement state. The entropies for this two-state
model and the vacuum can then be computed analytically
and the resulting entropy difference ∆STSM

gain agrees well
with the numerical calculation ∆Sgain for small values of
r ≤ 1/2. This two state model thermalizes much faster
than the full post-measurement state and so approaches
zero more rapidly due the finite number of states (2) used.
The interesting point to note is that even after Rob re-
ceives Alice’s classical information about the result of her
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measurement Rob is prevented from regaining the full 1
bit of information if his acceleration is non zero. This is
another way to see that from Rob’s perspective informa-
tion appears to be lost.
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FIG. 4: Rob’s entropy information gain (in bits) ∆Sgain =
Spre − Spost upon receiving the Alice’s measurement results:
numerical (solid) and ∆STSM

gain (dashed) for a 2-state model us-
ing the {|0〉I , |1〉I} sector from Rob’s post measurement state,
with xlm = ylm = 1/

√
2.

IV. DISCUSSION AND CONCLUSIONS

The main issues of teleportation between an inertial
Minkowksi observer Alice and a non-inertial, uniformly
accelerated Rindler observer Rob are two fold. First, as
a result of the acceleration, the Minkowski vacuum that

Rob moves through (for a single Rindler mode (Ω, ~k⊥))
can be written as a two-mode squeezed state with the
component Fock states existing in causally separated re-
gions I and II. Second, as a result of this fact, Rob’s
perceives the Minkowski vacuum as a pure thermal state
of temperature TU as the inevitable result of his complete
ignorance of region II.

In an attempt to teleport a state |ψ〉M = α|0〉M +
β|1〉M to Rob, the best we can expect Rob to recover
at the end of the protocol is |ψ〉I = α|0〉I + β|1〉I . In
this work we have calculated the fidelity of the state
Rob receives with this best possible result |ψ〉I . We have
demonstrated how the fidelity decreases with increasing
acceleration until at high temperatures all information
is lost and Rob perceives only the thermalized vacuum
state.

The model investigated here is equivalent to telepor-
tation through two channels, one of which is free space
for Alice and the second which involves parametric down

conversion with the following caveat described below. In
the second channel, a signal mode I and an idler mode II
experience a squeezing Bogoliubov transformation anal-
ogous to Eq.(16) [16]. Here r is proportional to the cou-
pling strength between the signal and idler mode times
the length of the crystal through which the parametric
down conversion takes place; higher interaction strengths
and/or longer interaction lengths corresponds to a higher
Unruh temperature. The caveat is that Rob, acting as
say the signal mode, has no access to information about
the idler and therefore must trace out this information.
Performing the teleportation protocol in such a system is
exactly analogous to teleportation between a Minkowski
and Rindler observer as considered in this work. In the
parametric down conversion model, Rob can choose to
ignore the idler information thus mimicking a Rindler
observer. However, for an accelerated observer, the exis-
tence of the horizons H± is of fundamental importance.
Since region I and II are causally disconnected, there
is no way, even in principle, for Rob to have any infor-
mation about region II, and thus his state is always a
reduced density matrix appropriate for region I.

We have given an explanation of the reduction of tele-
portation fidelity in terms of the Unruh radiation seen
by Rob in his frame. Note that this is an operationally
meaningful statement as Rob can attempt to verify that
he has not received the desired state

(

xlm|0〉I + ylm|1〉I
)

by local verification measurements (e.g. a single photon
interference experiment), and then send the results to Al-
ice. It would be quite easy to arrange a situation whereby
Alice could tell unambiguously that Rob had received the
wrong state. From an operational point of view Alice
would conclude that the shared entangled resource has
become decohered. It is well know that entanglement is
a fragile resource in the presence of environmental deco-
herence. It appears also to be a fragile resource when one
of the entangled parties undergoes acceleration. While
the degree of decoherence is exceedingly small for practi-
cal accelerations, the apparent connection between space
time geometry and quantum entanglement is intriguing.

Added Note During the preparation of this work, the
authors became aware of the recent paper by Anderson et

al [17] which also discusses teleportation and the Unruh
vacuum. However, that work considers a physically dif-
ferent situation than the one presented here. The authors
use the mirror modes of Audretsch and Müller [18] and
consequently have the accelerated observers travelling on
oppositely directed hyperbolas, with Alice in region I and
Bob in the causally disconnected region II. The telepor-
tation protocol is then interpreted from the point of view
of a Minkowski observer Mork. In this work, we consider
a setup between observers, one stationary, the other ac-
celerated, who remain causally connected to each other
during the teleportation protocol.
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