1,767 research outputs found
Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements
The measurement of the Compton edge of the scattered electrons in GRAAL
facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with
respect to the Cosmic Microwave Background dipole reveals up to 10 sigma
variations larger than the statistical errors. We now show that the variations
are not due to the frequency variations of the accelerator. The nature of
Compton edge variations remains unclear, thus outlining the imperative of
dedicated studies of light speed anisotropy
Water formation on bare grains: When the chemistry on dust impacts interstellar gas
Context. Water together with O2 are important gas phase ingredients to cool
dense gas in order to form stars. On dust grains, H2 O is an important
constituent of the icy mantle in which a complex chemistry is taking place, as
revealed by hot core observations. The formation of water can occur on dust
grain surfaces, and can impact gas phase composition. Aims. The formation of
molecules such as OH, H2 O, HO2, H2 O2, as well as their deuterated forms and
O2 and O3 is studied in order to assess how the chemistry varies in different
astrophysical environments, and how the gas phase is affected by grain surface
chemistry. Methods. We use Monte Carlo simulations to follow the formation of
molecules on bare grains as well as the fraction of molecules released into the
gas phase. We consider a surface reaction network, based on gas phase
reactions, as well as UV photo-dissociation of the chemical species. Results.
We show that grain surface chemistry has a strong impact on gas phase
chemistry, and that this chemistry is very different for different dust grain
temperatures. Low temperatures favor hydrogenation, while higher temperatures
favor oxygenation. Also, UV photons dissociate the molecules on the surface,
that can reform subsequently. The formation-destruction cycle increases the
amount of species released into the gas phase. We also determine the time
scales to form ices in diffuse and dense clouds, and show that ices are formed
only in shielded environments, as supported by observations.Comment: Accepted in A&
-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target
We measured the -series X-rays of the exotic atom in the
SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about
15 times the of hydrogen gas. At this density, the absolute
yields of kaonic X-rays, when a negatively charged kaon stopped inside the
target, were determined to be 0.012 for and
0.043 for all the -series transitions . These
results, together with the KEK E228 experiment results, confirm for the first
time a target density dependence of the yield predicted by the cascade models,
and provide valuable information to refine the parameters used in the cascade
models for the kaonic atoms.Comment: 9 pages, 5 figures. Submitted to Nuclear Physics A, Special Issue on
Strangeness and Char
A new limit on the light speed isotropy from the GRAAL experiment at the ESRF
When the electrons stored in the ring of the European Synchrotron Radiation
Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in
flight) the lower energy of the scattered electron spectra, the Compton Edge
(CE), is given by the two body photon-electron relativistic kinematics and
depends on the velocity of light. A precision measurement of the position of
this CE as a function of the daily variations of the direction of the electron
beam in an absolute reference frame provides a one-way test of Relativistic
Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF
measurements improve the previously existing one-way limits, thus showing the
efficiency of this method and the interest of further studies in this
direction.Comment: Proceed. MG12 meeting, Paris, July, 200
Search for light-speed anisotropies using Compton scattering of high-energy electrons
Based on the high sensitivity of Compton scattering off ultra relativistic
electrons, the possibility of anisotropies in the speed of light is
investigated. The result discussed in this contribution is based on the
gamma-ray beam of the ESRF's GRAAL facility (Grenoble, France) and the search
for sidereal variations in the energy of the Compton-edge photons. The absence
of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence
level on a combination of photon and electron coefficients of the minimal
Standard Model Extension (mSME). This new constraint provides an improvement
over previous bounds by one order of magnitude.Comment: Talk presented at the Fifth Meeting on CPT and Lorentz Symmetry,
University of Indiana, June 28-July 2, 201
Evidence for Narrow N*(1685) Resonance in Quasifree Compton Scattering on the Neutron
The first study of quasi-free Compton scattering on the neutron in the energy
range of GeV is presented. The data reveals a narrow
peak at GeV. This result, being considered in conjunction with
the recent evidence for a narrow structure at GeV in the
photoproduction on the neutron, suggests the existence of a new nucleon
resonance with unusual properties: the mass GeV, the narrow width
MeV, and the much stronger photoexcitation on the neutron than
on the proton.Comment: Replaced with the version published in Phys. Rev.
Limits on light-speed anisotropies from Compton scattering of high-energy electrons
The possibility of anisotropies in the speed of light relative to the
limiting speed of electrons is considered. The absence of sidereal variations
in the energy of Compton-edge photons at the ESRF's GRAAL facility constrains
such anisotropies representing the first non-threshold collision-kinematics
study of Lorentz violation. When interpreted within the minimal Standard-Model
Extension, this result yields the two-sided limit of 1.6 x 10^{-14} at 95%
confidence level on a combination of the parity-violating photon and electron
coefficients kappa_{o+} and c. This new constraint provides an improvement over
previous bounds by one order of magnitude.Comment: 4 pages, 4 figure
Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction
In the exotic atoms where one atomic electron is replaced by a ,
the strong interaction between the and the nucleus introduces an energy
shift and broadening of the low-lying kaonic atomic levels which are determined
by only the electromagnetic interaction. By performing X-ray spectroscopy for
Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the
shift and width for the state of and the state of kaonic
helium-3 and kaonic helium-4. These results provided unique information of the
kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015
conference, Kolymbari, Cret
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
The Importance of Local and Global Externalities for the Urban Industriai Development. A Dynamic Factor Analysis
- …
