146 research outputs found

    Subjective cognitive complaints and blood biomarkers of neurodegenerative diseases: a longitudinal cohort study

    Get PDF
    Background Subjective cognitive complaints (SCC) have been mostly studied in the context of Alzheimer’s disease in memory clinic settings. The potential of combining SCC with genetic information and blood biomarkers of neurodegenerative diseases for risk assessment of dementia and depression in the absence of dementia among community-dwelling older adults has so far not been explored. Methods Data were based on a population-based cohort of 6357 participants with a 17-year follow-up (ESTHER study) and a clinic-based cohort of 422 patients. Participants of both cohorts were grouped according to the diagnosis of dementia (yes/no) and the diagnosis of depression in the absence of dementia (yes/no). Participants without dementia included both cognitively unimpaired participants and cognitively impaired participants. Genetic information (APOE ε4 genotype) and blood-based biomarkers of neurodegenerative diseases (glial fibrillary acidic protein; GFAP, neurofilament light chain; NfL, phosphorylated tau181; p-tau181) were available in the ESTHER study and were determined with Simoa Technology in a nested case–control design. Logistic regression models adjusted for relevant confounders were run for the outcomes of all-cause dementia and depression in the absence of dementia. Results The results showed that persistent SCC were associated both with increased risk of all-cause dementia and of depression without dementia, independently of the diagnostic setting. However, the results for the ESTHER study also showed that the combination of subjective complaints with APOE ε4 and with increased GFAP concentrations in the blood yielded a substantially increased risk of all-cause dementia (OR 5.35; 95%CI 3.25–8.81, p-value < 0.0001 and OR 7.52; 95%CI 2.79–20.29, p-value < 0.0001, respectively) but not of depression. Associations of NfL and p-tau181 with risk of all-cause dementia and depression were not statistically significant, either alone or in combination with SCC, but increased concentrations of p-tau181 seemed to be associated with an increased risk for depression. Conclusion In community and clinical settings, SCC predict both dementia and depression in the absence of dementia. The addition of GFAP could differentiate between the risk of all-cause dementia and the risk of depression among individuals without dementia

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation

    Light-induced charge separation in Rhodopseudomonas viridis reaction centers monitored by Fourier-Transform Infrared difference spectroscopy: the quinone vibrations

    No full text
    Static FTIR light-induced difference spectra have been recorded for reaction centers from Rhodopseudomonas viridis in the following charge-separated states: P+QA(-)-PQA, P+QB(-)-PQB, I(-)-I, I-QA(-)-IQA, and I-QA(2-)-IQA. A comparison of the I(-)-I difference spectra with the I-QA(-)-IQA difference spectra reveals new bands which can be assigned to QA- vibrations; these vibrations are also observed in the P+QA(-)-PQA and P+QB(-)-PQB difference spectra. Through an analysis of all of the static difference spectra, the electron-transfer pathway can be monitored in the infrared from the primary donor, P, to the secondary acceptor, QB, via the intermediate acceptor, I, and the primary acceptor, QA. The difference spectra are dominated by absorbance changes of prosthetic groups, with very few identifiable contributions from amino acids and little overall structural change in the protein backbone, involving only one or two residues for the various charge-separated states. Oxidation of the primary donor in the reaction center shows the characteristic absorbance changes of the 9-keto and 10-ester carbonyl groups observed upon oxidation of bacteriochlorophyll b in a non-hydrogen-bonded environment [Ballschmiter, K. H., & Katz, J. J. (1969) J. Am. Chem. Soc. 91, 2661-2677]. Reduction of the quinones in the reaction center yields absorbance changes of the carbonyls observed during reduction of quinones in a hydrogen-bonded environmen

    FTIR Studies of Light-Induced Intramolecular Processes on Crystals and Reconstituted Reaction Centers from Rhodopseudomonas viridis

    No full text
    The crystallization (1) and subsequent x-ray diffraction analysis (2,3) of the reaction center from Rps. viridis have provided a detailed picture of the ground state, PIQA QB . In order to gain insight into the electron transfer dynamics of the protein-chromophore complex, light-induced FTIR difference spectra have been measured on RC crystals and on RC’s reconstituted into lipid vesicles. In contrast to Resonance Raman spectroscopy which yields information only on the conjugated parts of chromophores, infrared spectroscopy is able to monitor absorbance bands of all molecular groups in the protein-pigment complex. FTIR difference spectra of the various charge-separated states in the reaction center should additionally provide information on non-chromophoric groups in the protein and thereby a better understanding of the molecular events in the primary electron transfer reactions of photosynthesis

    FTIR studies on crystals of photosynthetic reaction centers

    Get PDF
    It is shown that high-quality light-induced FTIR-difference spectra can be obtained from reaction center crystals of Rhodopsendomonas viridis. Difference spectra between the ground state, PQ, and a light-activated state, P+Q−, have been recorded. The difference spectra are in good agreement with those reported previously for reaction centers reconstituted into lipid vesicles [(1985) FEBS Lett. 187, 227–232]. This good correspondence indicates that in both sample preparations the same intramolecular processes take place during this transition. In addition to measurements of absorbance changes in the visible spectral region, which indicate reactions of the chromophores and their microenvironments, those in the infrared spectral region also show that the protein side groups and backbone undergo the same light-induced changes in the crystals. It is observed that, besides the porphyrin ring system, the C9 = O keto and ester groups of, most likely, the primary donor, undergo light-induced changes in charge distribution during oxidation of the primary donor. Large conformational changes of the protein backbone can be excluded for the observed transition

    Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental and theoretical IR spectroscopy

    No full text
    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis
    corecore