28 research outputs found

    CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex

    Get PDF
    The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins. Here, we have established human CASC3 knockout cell lines to elucidate the cellular role of CASC3. In the knockout cells, overall EJC composition and EJC-dependent splicing are unchanged. A transcriptome-wide analysis reveals that hundreds of mRNA isoforms targeted by nonsense-mediated decay (NMD) are upregulated. Mechanistically, recruiting CASC3 to reporter mRNAs by direct tethering or via binding to the EJC stimulates mRNA decay and endonucleolytic cleavage at the termination codon. Building on existing EJC-NMD models, we propose that CASC3 equips the EJC with the persisting ability to communicate with the NMD machinery in the cytoplasm. Collectively, our results characterize CASC3 as a peripheral EJC protein that tailors the transcriptome by promoting the degradation of EJC-dependent NMD substrates

    The E3 ubiquitin ligase UBR5 interacts with the H/ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic stem cells

    No full text
    UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation

    Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: The randomised controlled Optimal Fibre Trial (OptiFiT).

    Get PDF
    Insoluble cereal fibres have been shown in large prospective cohort studies to be highly effective in preventing type 2 diabetes, but there is a lack of interventional data. Our 2 year randomised double-blind prospective intervention study compared the effect of an insoluble oat fibre extract with that of placebo on glucose metabolism and incidence of diabetes. METHODS: A total of 180 participants with impaired glucose tolerance underwent a modified version of the 1 year lifestyle training programme PREvention of DIAbetes Self-management (PREDIAS) and were randomised to receive a fibre supplement (n = 89; 7.5 g of insoluble fibre per serving) or placebo (n = 91; 0.8 g of insoluble fibre per serving) twice daily for 2 years. Eligible participants were men and women, were at least 18 years old and did not report corticosteroid or other intensive anti-inflammatory treatment, fibre intolerance or any of the following disorders: overt diabetes, chronic or malignant disease, or severe cardiopulmonary, endocrine, psychiatric, gastrointestinal, autoimmune or eating disorder. Participants were recruited at two clinical wards in Berlin and Nuthetal. The allocation was blinded to participants and study caregivers (physicians, dietitians, study nurses). Randomisation was conducted by non-clinical staff, providing neutrally numbered supplement tins. Both supplements were similar in their visual, olfactory and gustatory appearance. Intention-to-treat analysis was applied to all individuals. RESULTS: After 1 year, 2 h OGTT levels decreased significantly in both groups but without a significant difference between the groups (fibre -0.78 ± 1.88 mmol/l [p ≤ 0.001] vs placebo -0.46 ± 1.80 mmol/l [p = 0.020]; total difference 0.32 ± 0.29 mmol/l; not significant). The 2 year incidence of diabetes was 9/89 (fibre group) compared with 16/91 (placebo group; difference not significant). As secondary outcomes, the change in HbA1c level was significantly different between the two groups (-0.2 ± 4.6 mmol/mol [-0.0 ± 0.0%; not significant] vs +1.2 ± 5.2 mmol/mol [+0.1 ± 0.0%; not significant]; total difference 1.4 ± 0.7 mmol/mol [0.1 + 0.0%]); p = 0.018); insulin sensitivity and hepatic insulin clearance increased in both groups. After 2 years, improved insulin sensitivity was still present in both groups, although the effect size had diminished. Separate analysis of the sexes revealed a significantly greater reduction in 2 h glucose levels for women in the fibre group (-0.88 ± 1.59 mmol/l [p ≤ 0.001] vs -0.22 ± 1.52 mmol/l [p = 0.311]; total difference 0.67 ± 0.31 mmol/l; p = 0.015). Levels of fasting glucose, adipokines and inflammatory markers remained unchanged in the two groups. Significantly increased fibre intake was restricted to the fibre group, despite dietary counselling for both groups. No severe side effects occurred. CONCLUSIONS/INTERPRETATION: We cannot currently provide strong evidence for a beneficial effect of insoluble cereal fibre on glycaemic metabolism, although further studies may support minor effects of fibre supplementation in reducing glucose levels, insulin resistance and the incidence of type 2 diabetes. TRIAL REGISTRATION: clinicaltrials.gov NCT01681173 Funding: German Diabetes Foundation (grant no. 232/11/08)

    Dose-dependent effects of insoluble fibre on glucose metabolism: A stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT).

    Get PDF
    AIMS: As the first long-term RCT on insoluble cereal fibre, the optimal fibre trial demonstrated glycometabolic benefits, confirming cohort studies. The combined study intervention of lifestyle recommendations and supplementation with insoluble oat hulls fibre allows to clarify, which amount of fibre is required for a beneficial effect. METHODS: One hundred and eighty participants with impaired glucose tolerance underwent the one-year PREDIAS lifestyle programme and received a blinded, randomized fibre or placebo supplement for two years. We conducted a regression analyses and cut-off-based tertile comparisons in subjects with full data on dietary compliance (food records and accounted supplement; n = 120) after one year, investigating effects on fasting blood parameters, oral glucose tolerance test and anthropometry. RESULTS: We found a nonlinear inverse relation between fibre intake and change in postprandial 2-h glucose levels, showing a metabolic benefit beyond 14 g and a plateau beyond 25 g of total insoluble fibre per day. 2-h glucose levels improved significantly stronger in both upper tertiles (-0.9 [-1.6;-0.2] mmol/l, p = 0.047, and -0.6 [-1.6;0.3] mmol/l, p = 0.010) compared to the lowest tertile (0.1 [-1.2;1.1] mmol/l), also when adjusted for changes in bodyweight. Subjects with the highest fibre intake showed superior effects on fasting and postprandial insulin resistance, hepatic insulin clearance, leucocyte count and fatty liver index. CONCLUSIONS: Extending the knowledge on the benefits of insoluble oat hulls fibre, our post hoc analysis demonstrates a dose effect for glycaemia and associated metabolic markers. Further research is needed in order to replicate our findings in larger trials

    Obesity does not modulate the glycometabolic benefit of insoluble cereal fibre in subjects with prediabetes—a stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT).

    No full text
    Obesity does not modulate the glycometabolic benefit of insoluble cereal fibre in subjects with prediabetes-a stratified post hoc analysis of the Optimal Fibre Trial (OptiFiT). Background: OptiFiT demonstrated the beneficial effect of insoluble oat fibres on dysglycemia in prediabetes. Recent analyses of OptiFiT and other randomised controlled trials (RCTs) indicated that this effect might be specific for the subgroup of patients with impaired fasting glucose (IFG). As subjects with IFG are more often obese, there is a need to clarify if the effect modulation is actually driven by glycemic state or body mass index (BMI). Aim: We conducted a stratified post hoc analysis of OptiFiT based on the presence or absence of obesity. Methods: 180 Caucasian participants with impaired glucose tolerance (IGT) were randomised in a double-blinded fashion to either twice-a-day fibre or placebo supplementation for 2 years (n = 89 and 91, respectively). Once a year, they underwent fasting blood sampling, an oral glucose tolerance test (oGTT) and full anthropometry. At baseline, out of 136 subjects who completed the first year of intervention, 87 (62%) were classified as OBESE (BMI >30) and 49 subjects were NONOBESE. We performed a stratified per-protocol analysis of the primary glycemic and secondary metabolic effects attributable to dietary fibre supplementation after 1 year of intervention. Results: Neither the NONOBESE nor the OBESE subgroup showed significant differences between the respective fibre and placebo groups in metabolic, anthropometric or inflammatory outcomes. None of the four subgroups showed a significant improvement in either fasting glucose or glycated haemoglobin (HbA1c) after 1 year of intervention and only OBESE fibre subjects improved 2 h glucose. Within the NONOBESE stratum, there were no significant differences in the change of primary or secondary metabolic parameters between the fibre and placebo arms. We found a significant interaction effect for leukocyte count (time x supplement x obesity status). Within the OBESE stratum, leukocyte count and gamma-glutamyl transferase (GGT) levels decreased more in the fibre group compared with placebo (adjusted for change in body weight). Comparison of both fibre groups revealed that OBESE subjects had a significantly stronger benefit with respect to leukocyte count and fasting C-peptide levels than NONOBESE participants. Only the effect on leukocyte count survived correction for multiple comparisons. In contrast, under placebo conditions, NONOBESE subjects managed to decrease their body fat content significantly more than OBESE ones. Intention-to-treat (ITT) analysis resulted in similar outcomes. Conclusions: The state of obesity does not relevantly modulate the beneficial effect of cereal fibre on major glycometabolic parameters by fibre supplementation, but leukocyte levels may be affected. Hence, BMI is not a suitable parameter to stratify this cohort with respect to diabetes risk or responsiveness to cereal fibre, but obesity needs to be accounted for when assessing anti-inflammatory effects of fibre treatments. Targeted diabetes prevention should focus on the actual metabolic state rather than on mere obesity
    corecore