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Abstract

In this paper, we consider the physical layer security for simultaneous wireless information and power transfer (SWIPT)
in a multiple-input single-output (MISO) system that is consisted of three nodes: one transmitter with multiple
antennas, one information decoding (ID) receiver with single antenna, and one energy harvesting (EH) receiver with
single antenna. We propose a new zero-forcing based strategy that contains both the information beamforming and
the energy beamforming, pointing to different receivers. To prevent the energy receiver from possibly eavesdropping
the information, our target is to maximize the secrecy-rate of the ID receiver while at the same time maintaining a
minimum required energy for the EH receiver. For the case that artificial noise is not used, the original non-convex
problem can be directly converted into convex subproblems, where the closed-form optimal solutions are derived.
For the case that artificial noise is used, the initial non-convex problem can be decomposed into two quasi-convex
subproblems where closed-form solutions are derived, and the global optimal solutions are obtained with the aid of
one-dimensional search. Simulations results demonstrate the trade-off between the maximum secret information rate
and the transferred energy, which is characterized by the boundary of secret rate-energy (R-E) region.

Keywords: Physical layer security; Simultaneous wireless information and power transfer; Beamforming; Energy
harvesting

Introduction
Since radio-frequency (RF) signals that carry information
can, at the same time, be used for transporting energy,
simultaneous wireless information and power transfer
(SWIPT) is made possible in energy-constrained wireless
networks and has become an interesting research area
recently [1-5].
In [1], Varshney proposed a capacity-energy function

for SWIPT, where a fundamental trade-off between the
energy and the reliable information transmitted over a
single noisy line is studied. In [2], Grover and Sahai
extended the results of [1] to frequency-selective single-
antenna additive white Gaussian noise (AWGN) chan-
nels, where a similar trade-off in frequency-domain is
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demonstrated. In [3], the robust case for SWIPT was
studied using beamforming. In [4], Zhang revealed some
fundamental issues in designing wireless multiple-input
multiple-output (MIMO) systems to maximize the effi-
ciency of SWIPT. Both information decoding (ID) receiver
and energy harvesting (EH) receiver that are separated or
co-located were investigated in [4], and the optimal trans-
mission strategy was derived to achieve different trade-
offs between maximal information rate and transferred
energy. Most recently, in [5], the authors studied MIMO
beamforming with partial channel state information (CSI)
under energy harvesting constraints.
On the other hand, information-theoretic approach to

guarantee secrecy was initiated by Wyner [6], where the
concept of secrecy capacity was, for the first time, defined
in degraded discrete memoryless wiretap channels. In [7],
the results of [6] was generalized to a broadcast chan-
nel. Moreover, information secrecy in multiple access
channels (MAC) was studied in [8-10], and information
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secrecy in single-input single-output (SISO) fading chan-
nels was also studied in [11-13]. To guarantee information
secrecy usingWyner’s model, the channel condition of the
legitimate user is required to be better than that of the
eavesdropper. In practice, however, this requirement may
not be satisfied. Recently, an interesting way to achieve
the secrecy using the aided noise was proposed in [14],
where the information secrecy could be guaranteed even
when the channel condition of the legitimate user is worse
than that of the eavesdropper. Then the idea of aided noise
were used in lots of works [15-22] where the physical
layer security were studied. For example, [18-20] assume
that transmitters cooperate to generate the aided noise,
while [15-17,21,22] require the aided noise spread in
the null-space of the legitimate receiver’s channel. More-
over, [23] studied the case where the noise covariance
could take any spatial pattern. In addition, some other
secure transmitting designs with the aided noise were also
proposed aiming to provide the legitimate receiver with
different quality-of-service (QoS), e.g., the SINR-based
design [24] and the mean squared error (MSE)-based
design [25].
The physical layer security for SWIPT system was first

studied in [26], where secret information beamform-
ing vector and artificial noise transmit covariance were
designed. However, in [26], the closed-form solutions for
information beamforming vector and energy beamform-
ing vector cannot be derived. In this paper, we study
information secrecy of SWIPT using zero-forcing beam-
forming which has lower computational complexity than
the algorithm proposed in [26]. Remarkably, closed-form
solutions are derived for both information beamforming
vector and artificial noise (also used as energy) beam-
forming vector. The main contributions of this paper are
summarized as follows:

1. For the feasibility problem, we obtain the
closed-form solutions for energy beamforming
vector, which can be derived with
maximal-ratio-combining (MRC) principle.

2. For the conventional physical layer security problem
without artificial noise, we first prove that the initial
non-convex problem can be divided into two
subproblems, based on different values of energy
harvest requirements. Then, the closed-form
solutions for the subproblems are derived.

3. For SWIPT with joint energy beamforming and
information beamforming, we design zero-forcing
beamforming for physical layer security. The optimal
solutions for the non-convex problem is obtained
using one-dimensional search. Remarkably, at each
search step, closed-form solutions can be derived for
all subproblems.

Notation: Vectors and matrices are boldface small and
capital letters, respectively; the transpose, complex conju-
gate, Hermitian, inverse, and the pseudo-inverse of A are
denoted by AT, A∗, AH, A−1, and A†, respectively; Tr(A)

and A1/2 denote the trace and the square-root, respec-
tively; I and 0 denote an identity matrix and an all-zero
matrix, respectively, with appropriate dimensions; A � 0
and A � 0 mean that A is positive semi-definite and
positive definite, respectively; E[ ·] denotes the statistical
expectation; The distribution of a CSCG random variable
with zero mean and variance σ 2 is denoted as CN (0, σ 2),
and ∼ means ‘distributed as’; Ca×b denotes the space of
a × b matrices with complex entries; ‖x‖ denotes the
Euclidean norm of a vector x; the unit-norm vector of a
vector x is denoted as �x = x/‖x‖; the quantity min(a, b)
and max(a, b) represents the minimum and maximum
between two real numbers.

Systemmodel and problem formulation
Let us consider a MISO system with one transmitter, one
ID receiver, and one EH receiver, as shown in Figure 1.
The transmitter is equipped with M ≥ 1 antennas, while
the ID receiver and the EH receiver are both equipped
with single antenna. Both the information and the energy
are transmitted over the same frequency band. Denote
the baseband equivalent channels from the transmitter to
the ID receiver and the EH receiver as h ∈ C

M×1 and
g ∈ C

M×1, respectively. We further assume that the chan-
nels are quasi-static fading while at each fading state, both
h and g are known to the transmitter.
In case that the EH receiver may be an potential eaves-

dropper, the transmitter should adjust its strategy such
that information secrecy of the ID receiver is guaranteed
when operating in SWIPT mode. We then propose to use

Figure 1 AMISO system for simultaneous information
beamforming and energy beamforming.
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the aided noise to offer the energy to the EH receiver while
at the same time preventing it from decoding the message.
Meanwhile, the information beamforming will also be for-
mulated to improve the signal quality at the ID receiver.
Hence, the baseband transmitted signal can be expressed
as:

x = svi + wve (1)

where s ∈ C
M×1 and w ∈ C

M×1 denote the information
beamforming vector and the energy beamforming vector
to be designed; vi is the CSCG random information bear-
ing signal that is assumed to have the distribution vi ∼
CN (0, 1). In order to provide the strongest disturbance
to EH receiver, the energy-bearing signal should also be
CSCG and has the distribution ve ∼ CN (0, 1).
The signals received by the ID receiver and the EH

receiver are then given by:

yi = hHx + zi, ye = gHx + ze (2)

where zi ∼ CN (0, 1) and ze ∼ CN (0, 1) are the corre-
sponding receiver noise.
The secrecy rate for the general non-degraded discrete

memoryless wiretap channel is defined as [7]:

Cs � max
p(u,x)

I(u; yi) − I(u; ye) (3)

where I(u; yi) and I(u; ye) are the mutual information at
the ID receiver and the EH receiver, respectively; u is an
auxiliary variable satisfying theMarkov relation u → x →
(yi, ye); p(u, x) is the joint distributions of u and x that
satisfy the Markov relation.
Denoting S = ssH and W = wwH, the secrecy rate

optimization problema can be formulated as:

PA : max
S�0,W�0

log2

(
1+ hHSh

1+hHWh

)
−log2

(
1+ gHSg

1+gHWg

)

s.t. Tr(S + W ) ≤ P (4)
gHSg + gHWg + 1 ≥ Q (5)
Rank(S) = 1, Rank(W ) = 1 (6)

where P is the transmit power limit and Q is the energy
harvesting targetb. PA is a very hard problem, since the
objective function and the rank-one constraints are non-
convex functions. We then discuss PA in the following
cases.

The feasibility problem
For the case that there is no ID receiver, Tx can use its
whole power to satisfy the EH receiver’s energy constraint
in Equation 5. Then PA reduces to the feasibility problem,

i.e., if the reduced PA is infeasible, PA will always be
infeasible. The reduced PA can be simplified as:

max
W�0

0 (7)

s.t. Tr(W ) ≤ P (8)
gHWg + 1 ≥ Q. (9)

The maximumQ can be obtained by solving the following
problem:

max
W�0

gWgH + 1 (10)

s.t. Tr(W ) ≤ P. (11)

It is easily known that the maximum Q can be obtained
when the energy beamforming direction is the same as
that of channel g. Consequently, Qmax = P‖g‖2 + 1 is
obtained and the optimal energy beamforming vector w∗
can be derived as w∗ = √

Pg/‖g‖. Therefore, the optimal
energy beamforming vector is identical to that of the con-
ventional MISO transmission with MRC principle. In the
rest of this paper, we assume PA is always feasible (i.e.,
Q ≤ Qmax is satisfied).

Secure SWIPT without artificial noise
For the secure SWIPT without artificial noise, PA can be
simplified as:

PB : max
S�0

log2
(
1 + hHSh

) − log2
(
1 + gHSg

)
(12)

s.t. Tr(S) ≤ P, gHSg + 1 ≥ Q (13)
Rank(S) = 1. (14)

It is easily known that PB in its current form is still neither
convex nor concave. Fortunately, PB can be reformulated
as a quasi-convex problem or a convex problem based on
different energy harvesting limitsQ; for both, closed-form
solutions can be derived.

Lemma 1. For the secure SWIPT without artificial noise,
if the energy harvesting constraint 1 ≤ Q ≤ gHS∗g + 1, PB
is equivalent to:

PB−1 : max
S�0

log2
(
1+hHSh

)−log2
(
1+gHSg

)
(15)

s.t. Tr(S) ≤ P, Rank(S) = 1 (16)

where S∗ is the optimal transmit covariance matrix of
PB−1. If gS∗gH + 1 < Q ≤ Qmax, PB is equivalent to:

PB−2 : max
S�0

log2
(
1 + hHSh

) − log2Q (17)

s.t. Tr(S) ≤ P, gHSg + 1 = Q (18)
Rank(S) = 1. (19)

The optimal information beamforming vector forPB−2 can
be written in the form of s = ηs�g + ξs�g⊥, where �g = g/‖g‖
and �g⊥ = g⊥/‖g⊥‖; g⊥ = (I − �g�gH)h is the projection of
h onto the null space of g; ηs and ξs are complex weights.
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Proof. Assuming S∗ is the optimal transmitting covari-
ance matrix of PB−1, we know that the energy harvested
at EH receiver can be expressed as Q∗ = gHS∗g + 1. If
Q∗ ≥ Q, it is easily known that PB is not limited by the
energy harvesting constraint. Therefore, S∗ is also optimal
for PB when Q∗ ≥ Q.
If Q > gHS∗g + 1, it follows that PB is limited by the

the energy harvesting constraint. Then, we prove that in
PB at the optimal point, gHS∗g + 1 = Qmust be satisfied
by contradiction. Assuming the optimal S∗ for PB satis-
fies gHS∗g + 1 > Q, it corresponds to the case of PB−1,
which contradicts the fact that Q > gHS∗g + 1 must be
satisfied in this case. From Equation 13, we know that at
the optimal point, there is gHS∗g + 1 = Q. Substituting
gHS∗g + 1 = Q into PB, we know that for the case of
Q > gHS∗g + 1, PB and PB−2 have the same optimal
solutions.
Aiming to prove that there is an optimal structure for

the beamforming vector for PB−2, we first prove that the
optimal transmit covariance is rank-one. It is easily shown
that PB− 2 has the same optimal information transmit
covariance as the following problem:

PB−3 : max
S�0

Tr(HS) (20)

s.t. Tr(S) ≤ P (21)
Tr(GS) + 1 = Q (22)
Rank(S) = 1, (23)

where H = hhH and G = ggH. After dropping the rank-1
constraint in Equation 23, the Lagrange [27] of PB−3 is
defined as:

L(S,α,β) = Tr(HS) − α (Tr(S) − P)

− β (Tr(GS) + 1 − Q)

= Tr(�S) + (αP − β + βQ), (24)

where � = H − αI − βG; α and β denote the dual vari-
ables associated with the constraints in Equations 21 and
22, respectively. Then, the Lagrangian dual function [27]
of PB−3 is defined as:

ζ(α ≥ 0,β) = max
S�0

L(S,α,β), (25)

which must have a bounded optimal value. The dual
problem [27] of PB−3 is defined as:

min
α,β

max
S�0

L(S,α,β). (26)

The Lagrangian dual problem for PB−3 can be further
expressed as:

min
α,β

αP − β + βQ (27)

s.t. − � � 0, α ≥ 0. (28)

The Karush-Kuhn-Tucker (KKT) conditions [27] related
to S can be formulated as:

H − α∗I − β∗G = �∗, (29)
�∗S∗ = 0, (30)

where α∗ ≥ 0, β∗ and �∗ � 0 denote the corresponding
optimal dual variables.

Lemma 1.1. The optimal dual variable α∗ satisfies α∗ > 0.

Proof. Assuming α∗ = 0, Equation 29 can be reex-
pressed as:

H − β∗G = �∗. (31)

Using the constraint �∗ � 0, for any x �= 0, we have
xH�∗x ≤ 0. Assuming xHGx = 0, from Equation 31 we
obtain:

xH�∗x = xHHx ≤ 0. (32)

Since H � 0, there is xHHx ≥ 0. Thus, we know xHHx =
0 must hold. It requires that any x �= 0 lies in the null
space of G must also be in the null space of H. How-
ever, it cannot be true since h and g are independent and
randomly generated vectors and should be linearly inde-
pendent. Consequently, α∗ > 0 must hold in this case,
which completes the proof of Lemma 1.1.
Since α∗ > 0, assuming β∗ ≥ 0, from Equation 29

it follows that −α∗I − β∗G has a full rank M. Thus,
from Equation 29, we obtain Rank(�∗) ≥ M − 1. From
Equation 30, we know:

Rank(�∗) + Rank(S∗) ≤ M. (33)

Consequently, we obtain Rank(S∗) ≤ 1. Assuming β∗ < 0,
we will draw the contradiction as follows. Consider first
the problem in Equation 25 of maximizing the Lagrangian
over S with fixed α and β . Discarding the constant terms
associated with α and β , problem in Equation 25 can be
equivalently rewritten as:

max
S�0

Tr((H − αI − βG)S). (34)

It is easily shown that problem in Equation 34 is
unbounded when β → −∞. Thus, β∗ < 0 cannot be true.
From the above discussions, we know that the optimal S∗
for PB−2 is indeed rank-1. Thus, S can be expressed as
S = ssH, where s is the information beamforming vector.
PB−2 can be equivalently reformulated as:

PB−4 : max
s

log2
(
1 + ‖hHs‖2) − log2Q (35)

s.t. ‖s‖2 ≤ P, (36)
‖gHs‖2 + 1 = Q. (37)

Next, let us prove that there exist an optimal structure
for the information beamforming vector for PB−4. We
can first assume there is �k that satisfies �kH�g = 0. Then,
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the optimal information beamforming vector s∗ for PC−4
can be expressed as s∗ = ηs∗ �g + ξs∗ �k. Since �gH⊥�g = 0 and
‖hH�g⊥‖ ≥ ‖hH�k‖, replacing �k with �g⊥ does not influence
the equality constraint in Equation 36 in PC−4 but always
helps to improve the value of Equation 35. Thus, the opti-
mal information beamforming vector can be expressed as
s∗ = ηs∗ �g + ξs∗ �g⊥.
Lemma 1 is thus proved.
Lemma 1 implies that problem PB can be divided into

two subproblems depending on Q. The optimal informa-
tion beamforming vector can be derived. To summarize,
the following theorem is established.

Theorem 1. For the secure SWIPTwithout artificial noise,
if 1 ≤ Q ≤ gHS∗g + 1 which corresponding to PB−1, the
optimal information beamforming vector can be obtained
as:

s∗ =
√
P(I + PggH)−1/2e

‖(I + PggH)−1/2e‖ (38)

where e is any scaled version of the eigenvector of Z cor-
responding to its largest eigenvalue and Z is defined as:

Z = (I + PggH)−1/2(I + PhhH)(I + PggH)−1/2. (39)

If gHS∗g ≤ Q ≤ Qmax which corresponding to PB−2, the
optimal information beamforming vector can be expressed
as s∗ = η∗

s �g + ξ∗
s �g⊥ where η∗

s and ξ∗
s can be derived as

following:

η∗
s =

√
Q − 1
‖g‖

ηh
‖ηh‖ , ξ∗

s =
√
P − Q − 1

‖g‖2
ξh

‖ξh‖ . (40)

Proof. When 1 ≤ Q ≤ gHS∗g + 1, we know that PB−1
has the same optimal solutions as:

max
S�0

1 + hHSh
1 + gHSg

(41)

s.t. Tr(S) ≤ θP, (42)

where the optimal information beamforming vector can
be derived as [28].
When gHS∗g ≤ Q ≤ Qmax, we can first express h as

h = ηh�g + ξh�g⊥. Then, it follows that PB−2 has the same
optimal solutions as:

max log2(1 + ‖ηHh ηs + ξHh ξs‖2) − log2(Q) (43)
s.t. ‖ηs‖2 + ‖ξs‖2 ≤ P (44)

‖g‖2‖ηs‖2 + 1 = Q, (45)

where the closed-form solutions can be easily derived by
using standard geometry.
The proof is thus completed.

Zero-forcing-based joint information and energy
beamforming
When artificial noise is used, we should design joint infor-
mation and energy beamforming. Since PA is very hard
to be solved, we let the information beamforming vec-
tor s be in the null space of g (i.e., gHSg = 0). Thus,
the EH receiver cannot receive the information signal,
and the energy harvest constraint is satisfied by energy
beamforming. Let us define an auxiliary variable θ as the
proportion of the transmit power assigned to the energy
beamforming. Then, PA can be then reformulated as:

PC : max
S�0,W�0

log2

(
1 + hHSh

1 + hHWh

)
(46)

s.t. Tr(S) ≤ (1 − θ)P, Tr(W ) ≤ θP (47)
gHWg + 1 ≥ Q (48)
gHSg = 0, 0 ≤ θ ≤ 1 (49)
Rank(S) = 1, Rank(W ) = 1. (50)

By using primal decomposition, PC can be divided into
two subproblems. The result is implied by the following
proposition.

Proposition 1. PC has the same optimal solutions S∗ and
W ∗ as that of:

PD : max f1(θ)f2(1 − θ) (51)
s.t. 0 ≤ θ ≤ 1, (52)

where f1(θ) is defined as:

f1(θ) = max
W�0

1
1 + hHWh

(53)

s.t. Tr(W ) ≤ θP (54)
gHWg + 1 ≥ Q (55)
Rank(W ) = 1, (56)

and f2(1 − θ) is defined as:

f2(1 − θ) = max
S�0

hHSh (57)

s.t. Tr(S) ≤ (1 − θ)P (58)
gHSg = 0 (59)
Rank(S) = 1. (60)

Proof. Since the objective function of PC can be
expressed as the multiplication of two parts, primal
decomposition [27] can be used to divide PC into two
subproblems. The proof is completed.
To obtain the closed-form solution for f1(θ), the follow-

ing two lemmas are needed.

Lemma 2. The optimal W for f1(θ) must satisfy
Rank(W ) = 1.
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Proof. We first relax f1(θ) by dropping the rank-one con-
straint that Rank(W ) = 1. Then, the same optimal W for
f1(θ) can be obtained by solving the following problem:

f ′
1(θ) = min hHWh (61)

s.t. Tr(W ) ≤ θP (62)
gHWg + 1 ≥ Q (63)
W � 0. (64)

The KKT conditions [27] for f ′
1(θ) can be formulated as:

hhH + λI = μggH + � (65)
λ(Tr(W ) − θP) = 0 (66)
μ(ggH − Q + 1) = 0 (67)

Tr(�W) = 0 (68)

where λ ≥ 0, μ ≥ 0 and � � 0 are the Lagrange mul-
tipliers associated with the constraints in Equation 62 to
Equation 64, respectively.
When λ = 0, it follows from Equation 65 that g must

be in parallel to h. Consequently, it is easily shown in f ′
1(θ)

that the optimalW isW = (Q − 1)hhH/‖gHh‖2 and thus
Rank(W ) = 1.
When λ > 0, it follows from Equation 65 that the

left side has a full rank of M. while the right side of
Equation 65must also have a full rank ofM. Consequently,
we obtain Rank(�) ≥ M − 1. From Equation 68 , we
obtain Rank(W ) + Rank(�) ≤ M. Hence, there must be
Rank(W ) ≤ 1 and the proof is completed.

Lemma 3. For f1(θ), the range of the optimal power allo-
cation ratio θ must satisfy:

Q − 1
P‖g‖2 ≤ θ ≤ Q − 1

P‖(I − �h�hH)g‖2
, (69)

where �h = h/‖h‖ is the unit-norm vector of the ID
receiver’s channel.

Proof. Since the optimal transmit covariance is indeed
rank-1, we know that W can be expressed as W =
wwH. To satisfy the energy harvesting constraint of f1(θ),
‖gHw‖2 + 1 ≥ Q should be guaranteed. For any energy
beamforming vector w, there must be:

Q ≤ ‖gHw‖2 + 1 ≤ ‖g‖2‖w‖2 + 1. (70)

Moreover, the transmit power constraint in Equation 62
can be reformulated as"

‖w‖2 ≤ θP. (71)

From Equations 70 and 71, there is:

θ ≥ Q − 1
P‖g‖2 . (72)

On the other hand, since W � 0, there must be
hHWh ≥ 0. It is easily shown that the minimum value

of Equation 61 is equal to zero when the energy beam-
forming vector w lies in the null space of the ID receiver’s
channel vector h, i.e., hHw = 0. Then, let us assume that
hHw = 0. It follows from Equation 63 that:

Q ≤ ‖gHw‖2 + 1 ≤ ‖(I − �h�hH)g‖2‖w‖2 + 1 (73)

must hold. From Equations 71 and 73, there must be:
θ ≥ (Q − 1)/(P‖(I − �h�hH)g‖2). (74)

Then, it is easily shown that for any θ that θ > (Q −
1)/(P‖(I − �h�hH)g‖2), we can always find a smaller θ ′ =
(Q − 1)/(P‖(I − �h�hH)g‖2) that maintains hHWh = 0.
Meanwhile, the saved power can then be used for infor-
mation beamforming to obtain a bigger secret rate. Con-
sequently, the optimal power allocation ratio should not
bigger than (Q − 1)/(P‖(I − �h�hH)g‖2). And the proof is
completed.
Lemma 3 implies that for PD, the power allocation ratio

should be limited to a subset of 0 ≤ θ ≤ 1. The subset
limitation is significant for complexity reduction in one-
dimensional search. In fact, if ‖g‖2 = ‖(I − �h�hH)g‖2,
we can always obtain the optimal solutions without using
one-dimensional search.
Using lemma 2 and lemma 3, we know that f1(θ) has the

same optimal information beamforming vector as:

PD−1 : min ‖hHw‖2 (75)
s.t. ‖w‖2 ≤ θP (76)

‖gHw‖2 + 1 ≥ Q. (77)

The optimal w for PD−1 can be expressed in the form
of αw�h + βw�h⊥ where �h = h/‖h‖ and �h⊥ = h⊥/‖h⊥‖;
h⊥ = (I − �h�hH)g is the projection of g onto the null space
of h; αw and βw are complex weights. The proof is similar
as lemma 1 and is omitted here for brief. Then, we can let
g = αg �h + βg �h⊥. PD−1 can be equivalently reformulated
as:

PD−2 : min ‖αw‖2‖h‖2 (78)
s.t. ‖αw‖2 + ‖βw‖2 ≤ θP (79)

‖αH
wαg + βH

w βg‖2 + 1 ≥ Q. (80)

To derive the closed-form solution for PD−2, the follow-
ing lemma is needed.

Lemma 4. The optimal αw and βw for PD−2must satisfy:

‖αw‖2 + ‖βw‖2 = θP, (81)
‖αH

wαg + βH
w βg‖2 + 1 = Q. (82)

Proof. It is easily known that when ‖αw‖2+‖βw‖2 < θP,
we can always decrease θ to improve the power allocated
for the information beamforming to obtain a bigger secret
rate. Thus, at the optimal point, there must be ‖αw‖2 +
‖βw‖2 = θP.
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Next, let us prove that Equation 82 is satisfied using the
result of lemma 3.
Case 1: θ = (Q−1)/(P‖g‖2): It follows from Equation 70

that w is parallel to g. Thus, there must be βw = 0. Then
PD−2 can be simplified as:

min ‖αw‖2‖h‖2 (83)
s.t. ‖αw‖2 ≤ θP (84)

‖αH
wαg‖2 + 1 ≥ Q, (85)

where it is easy to observe that ‖αH
wαg‖2 + 1 = Qmust be

satisfied.
Case 2: θ = (Q − 1)/(P‖(I − �h�hH)g‖2): It follows from

Equation 73 thatw is orthogonal to g. Thus, there must be
αw = 0. Then PD−2 can be simplified as:

min 0 (86)
s.t. ‖βw‖2 ≤ θP (87)

‖βH
w βg‖2 + 1 ≥ Q. (88)

Using the proof of lemma 3, we know that at the opti-
mal point ‖βH

w βg‖2 + 1 = Q must be satisfied to save the
transmit power.
Case 3: (Q − 1)/(P‖g‖2) < θ < (Q − 1)/(P‖(I −

�h�hH)g‖2): There must be ‖αw‖ > 0 and ‖βw‖ > 0.
Let us prove that ‖α′

w‖2‖αg‖2 + ‖β ′
w‖2‖βg‖2 + 1 = Q

must be satisfied by contradiction. Assume α′
w and β ′

w
are the optimal complex weights for PD−2, which satisfy
‖α′

w‖2‖αg‖2 + ‖β ′
w‖2‖βg‖2 + 1 > Q. Then, we can always

find the special weights α∗
w and β∗

w which satisfy:⎧⎪⎪⎨
⎪⎪⎩

‖α∗
w‖ < ‖α′

w‖,
‖β∗

w‖ > ‖β ′
w‖,

‖α∗
w‖2 + ‖β∗

w‖2 = θP,
‖α∗

w‖2‖αg‖2 + ‖β∗
w‖2‖βg‖2 + 1 = Q.

(89)

Using Equation 89, and substituting α∗
w and β∗

w into
Equation 78, we obtain:

‖α∗
w‖2‖h‖2 < ‖α′

w‖2‖h‖2, (90)

which contradicts the assumption that α′
w and β ′

w are
the optimal complex weights for PD−2. Combing the
above discussions, at the optimal point, ‖αw‖2‖αg‖2 +
‖βw‖2‖βg‖2 + 1 = Qmust always be satisfied.
Lemma 4 is thus proved.
Using lemma 2, lemma 3, and lemma 4, the closed-form

solutions for f1(θ) and f2(1 − θ) can be easily derived. To
summarize, the following theorem is established.

Theorem 2. For any given θ that (Q − 1)/(P‖g‖2) ≤ θ ≤
(Q−1)/(P‖(I−�h�hH)g‖2), the optimal energy beamforming
vector for f1(θ) can be derived as:

w∗ = α∗
w�h + β∗

w�h⊥ (91)

where η∗
w and ξ∗

w are the complex weights that can be
expressed as:

α∗
w =

√
Q − 1 − θP‖βg‖2
‖αg‖2 − ‖βg‖2

αg

‖αg‖
, (92)

β∗
w =

√
θP − Q − 1 − θP‖βg‖2

‖αg‖2 − ‖βg‖2
βg

‖βg‖ . (93)

The optimal information beamforming vector for f2(1− θ)

can be derived as:

s∗ = √
(1 − θ)P

(
I − �g�gH

)
h∥∥∥(

I − �g�gH
)
h
∥∥∥ . (94)

where the proof is similarly as in PB−2.

Simulation results
In this section, computer simulation results are presented
to evaluate the performance of the proposed optimal
approaches. Unless otherwise stated, it is assumed that the
transmitter is equipped with M = 8 antennas, and both
the ID receiver and the EH receiver are equipped with sin-
gle antenna. The entries of the channel vectors h and g
are generated by independent circularly symmetric com-
plex Gaussian (CSCG) random variables distributed as
CN (0, 1). The achievable rate C is plotted versus a range
of transmit power limit P or harvested energy limit Q,
where P is defined in dBm and Q is defined in mW. The
results are derived by averaging over 10,000 simulation
trails.
In the first example, assuming the transmit power P is

constant, we can obtain the secret rate-energy region for
the proposed algorithms.
In Figure 2, the transmit power is set to be P = 10 dBm.

For the algorithm without using artificial noise, the secret
rate monotonically decreases with the increasing of har-
vested energy Q, and will approach zero when Q = 18.5
mW. In practice, if the secret rate approaches zero, only
the EH receiver can be satisfied, while the communication
between the transmitter and the ID receiver should stop.
For the algorithm with artificial noise (i.e., joint informa-
tion and energy beamforming is used), the secret rate is
much greater than that obtained by the algorithm with-
out artificial noise. Interestingly, by the algorithm with
artificial noise, the secret rate decreases slow when Q ≤
15 mW, while decreases fast when Q > 15 mW, and
approaches zero when Q > 20 mW. The optimal power
allocation ratio θ for the algorithm with artificial noise
is demonstrated in Figure 3. It is clear that the optimal
power allocation ratio θ increases with Q. When Q = 0
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Figure 2 Secret rate-energy region with P = 10 (dBm).

mW, which means that there is no energy harvest require-
ment, no power should be used for energy beamforming.
Thus, we obtain θ = 0. For the case that Q = 20 mW,
the optimal power allocation ratio θ is obtained as θ =
1, which means that all power will be used for energy
beamforming.
In the second example, assuming the harvested energy

Q is relatively constant, we can obtain the secret rate-
power region for the proposed algorithms.
Assuming Q is set to be Q = Qmax/50, the simulation

results are demonstrated in Figure 4. With the increase of
P, the secret rate for both algorithms will monotonically
increase with P increasing. Remarkably, the secret rate
obtained by the algorithm with artificial noise is always
bigger than that obtained by the algorithm without artifi-
cial noise. The secret rate difference approaches 2 b/s/Hz.
Interestingly, the secret rate obtained by the algorithm
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Figure 3 Optimal θ∗ with P = 10 (dBm).
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Figure 4 Secret rate-energy region withQ = Qmax/50.

with artificial noise increases fast when P ≤ 5 dBm. The
reason lies in that when P ≤ 5 dBm, θ decreases fast,
which is demonstrated in Figure 5.

Conclusions
This paper investigated the physical layer security for
SWIPT. We designed zero-forcing-based joint informa-
tion beamforming and energy beamforming to maximize
the secret rate under the transmit power constraint and
the energy harvesting constraint. The initial optimization
was divided into subproblems for which closed-form solu-
tions were obtain. The global optimal solution was also
derived by using one-dimensional search. The conven-
tional SWIPT without artificial noise was also studied,
where closed-form solutions were also obtained. Simula-
tion results were provided to evaluate the efficiency of the
proposed algorithms.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

P (dBm)

P
ow

er
 A

llo
ca

tio
n 

R
at

io
 fo

r 
A

rt
ifi

ci
al

 N
oi

se
 

Figure 5 Optimal θ∗ withQ = Qmax/50.
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Endnotes
aNote that the MSE-based design [29] could also be

served as an interesting research topic.
b In general, the harvested energy is proportional to the

energy of the received signal [4]. Hence, the harvested
energy at the EH receiver can be computed from
Q = ζ

(
|gs|2 +|gw|2

)
, where ζ is a constant that accounts

for the efficiency in the energy conversion. Interestingly,
the energy limit Q is very similar to the interference limit
in cognitive radio (CR) [30-34], where the interference
should be controlled to be below a predefined value.
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