33 research outputs found

    Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    Get PDF
    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible

    Juvenile Songbirds Compensate for Displacement to Oceanic Islands during Autumn Migration

    Get PDF
    To what degree juvenile migrant birds are able to correct for orientation errors or wind drift is still largely unknown. We studied the orientation of passerines on the Faroe Islands far off the normal migration routes of European migrants. The ability to compensate for displacement was tested in naturally occurring vagrants presumably displaced by wind and in birds experimentally displaced 1100 km from Denmark to the Faroes. The orientation was studied in orientation cages as well as in the free-flying birds after release by tracking departures using small radio transmitters. Both the naturally displaced and the experimentally displaced birds oriented in more easterly directions on the Faroes than was observed in Denmark prior to displacement. This pattern was even more pronounced in departure directions, perhaps because of wind influence. The clear directional compensation found even in experimentally displaced birds indicates that first-year birds can also possess the ability to correct for displacement in some circumstances, possibly involving either some primitive form of true navigation, or ‘sign posts’, but the cues used for this are highly speculative. We also found some indications of differences between species in the reaction to displacement. Such differences might be involved in the diversity of results reported in displacement studies so far

    Innovative Visualizations Shed Light on Avian Nocturnal Migration

    Get PDF
    We acknowledge the support provided by COST–European Cooperation in Science and Technology through the Action ES1305 ‘European Network for the Radar Surveillance of Animal Movement’ (ENRAM) in facilitating this collaboration. We thank ENRAM members and researchers attending the EOU round table discussion ‘Radar aeroecology: unravelling population scale patterns of avian movement’ for feedback on the visualizations. We thank Arie Dekker for his feedback as jury member of the bird migration visualization challenge & hackathon hosted at the University of Amsterdam, 25–27 March 2015. We thank Willem Bouten and Kevin Winner for discussion of methodological design. We thank Kevin Webb and Jed Irvine for assistance with downloading, managing, and reviewing US radar data. We thank the Royal Meteorological Institute of Belgium for providing weather radar data.Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.Yeshttp://www.plosone.org/static/editorial#pee

    Metabolic characteristics and body composition in house finches: effects of seasonal acclimatization

    Full text link
    House finches ( Carpodacus mexicanus ) from the introduced population in the eastern United States were examined to assess metabolic characteristics and aspects of body composition associated with seasonal acclimatization. Wild birds were captured during winter (January and February) and late spring (May and June) in southeastern Michigan. Standard metabolic rates did not differ seasonally, but cold-induced “peak” metabolic rate was 28% greater in winter than late spring. The capacity to maintain elevated metabolic rates during cold exposure (“thermogenic endurance”) increased significantly from an average of 26.1 to 101.3 min in late spring and winter, respectively. House finches captured in the late afternoon during winter had twice as much stored fat as those during late spring. Both the wet mass and lean dry mass of the pectoralis muscle, a primary shivering effector, were significantly greater during winter. The seasonal changes in peak metabolism and thermogenic endurance demonstrate the existence and magnitude of metabolic seasonal acclimatization in eastern house finches. Increased quantities of stored fat during winter appear to play a role in acclimatization, yet other physiological adjustments such as lipid mobilization and catabolism are also likely to be involved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47132/1/360_2004_Article_BF00367313.pd
    corecore