10,844 research outputs found

    Integral Field Spectroscopy based H\alpha\ sizes of local Luminous and Ultraluminous Infrared Galaxies. A Direct Comparison with high-z Massive Star Forming Galaxies

    Full text link
    Aims. We study the analogy between local U/LIRGs and high-z massive SFGs by comparing basic H{\alpha} structural characteristics, such as size, and luminosity (and SFR) surface density, in an homogeneous way (i.e. same tracer and size definition, similar physical scales). Methods. We use Integral Field Spectroscopy based H{\alpha} emission maps for a representative sample of 54 local U/LIRGs (66 galaxies). From this initial sample we select 26 objects with H{\alpha} luminosities (L(H{\alpha})) similar to those of massive (i.e. M\ast \sim 10^10 M\odot or larger) SFGs at z \sim 2, and observed on similar physical scales. Results. The sizes of the H{\alpha} emitting region in the sample of local U/LIRGs span a large range, with r1/2(H{\alpha}) from 0.2 to 7 kpc. However, about 2/3 of local U/LIRGs with Lir > 10^11.4 L\odot have compact H{\alpha} emission (i.e. r1/2 < 2 kpc). The comparison sample of local U/LIRGs also shows a higher fraction (59%) of objects with compact H{\alpha} emission than the high-z sample (25%). This gives further support to the idea that for this luminosity range the size of the star forming region is a distinctive factor between local and distant galaxies of similar SF rates. However, when using H{\alpha} as a tracer for both local and high-z samples, the differences are smaller than the ones recently reported using a variety of other tracers. Despite of the higher fraction of galaxies with compact H{\alpha} emission, a sizable group (\sim 1/3) of local U/LIRGs are large (i.e. r1/2 > 2 kpc). These are systems showing pre-coalescence merger activity and they are indistinguishable from the massive high-z SFGs galaxies in terms of their H{\alpha} sizes, and luminosity and SFR surface densities.Comment: Accepted for publication in A&A. (!5 pages, 7 figures, 2 tables

    Cambio actitudinal de estudiantes de octavo grado hacia el aprendizaje de interacciones biológicas mediante la resolución de problemas

    Get PDF
    Se presenta aquí una experiencia pedagógica en enseñanza de la biología, desarrollada en el espacio académico de Aula experimental de la Universidad Distrital Francisco José de Caldas, con 28 estudiantes de grado 8vo del Colegio La Candelaria, sede la Concordia, en la ciudad de Bogotá (Colombia) con un rango de edades entre los 12 y los 17 años, se escogen tres estudiantes, tomando como eje conceptual las interacciones biológicas. Este trabajo se realizó en las etapas de planificación, diseño y implementación de la unidad didáctica “Preguntando ando, con el ecosistema interactuando” la cual se centró en el enfoque de enseñanza por resolución de problemas. En la finalización de este trabajo se encontró un cambio actitudinal de los estudiantes con respecto al aprendizaje del eje conceptual, teniendo como referente los componentes actitudinales expuestos por Vilches y Furió (1997)

    Steric Effects on the Structures, Reactivity, and Coordination Chemistry of Tris(2-pyridyl)aluminates.

    Get PDF
    Introducing substituents in the 6-position of the 2-pyridyl rings of tris(pyridyl)aluminate anions, of the type [EtAl(2-py')3 ](-) (py'=a substituted 2-pyridyl group), has a large impact on their metal coordination characteristics. This is seen most remarkably in the desolvation of the THF solvate [EtAl(6-Me-2-py)3 Li⋅THF] to give the monomer [EtAl(6-Me-2-py)3 Li] (1), containing a pyramidal, three-coordinate Li(+) cation. Similar monomeric complexes are observed for [EtAl(6-CF3 -2-py)3 Li] (2) and [EtAl(6-Br-2-py)3 Li] (3), which contain CF3 and Br substituents (R). This steric influence can be exploited in the synthesis of a new class of terminal Al-OH complexes, as is seen in the controlled hydrolysis of 2 and 3 to give [EtAl(OH)(6-R-2-py)2 ](-) anions, as in the dimer [EtAl(OH)(6-Br-2-py)2 Li]2 (5). Attempts to deprotonate the Al-OH group of 5 using Et2 Zn led only to the formation of the zincate complex [LiZn(6-Br-py)3 ]2 (6), while reactions of the 6-Br substituted 3 and the unsubstituted complex [EtAl(2-py)3 Li] with MeOH give [EtAl(OMe)(6-Br-2-py)2 Li]2 (7) and [EtAl(OMe)(2-py)2 Li]2 (8), respectively, having similar dimeric arrangements to 5. The combined studies presented provide key synthetic methods for the functionalization and elaboration of tris(pyridyl)aluminate ligands.We thank the EU for a Marie Curie Intra European Fellowship within the seventh European Community Framework Programme for R.G.-R. and an Advanced Investigator Award for D.S.W.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/chem.20150215

    Interaction Effects on the Magneto-optical Response of Magnetoplasmonic Dimers

    Get PDF
    The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimer's metallic components and their specific location within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity in a purely plasmonic component, even larger than that of the MO one, therefore dominating the overall MO spectral dependence of the system. Adequate stacking of these components may allow obtaining, for specific spectral regions, larger MO activities in systems with reduced amount of MO metal and therefore with lower optical losses. Theoretical results are contrasted and confirmed with experiments for selected structures

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140μ\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01μHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    Anomalous high activation energy for creep in nanostructured 3YTZP/Ni cermets

    Get PDF
    The plastic behavior of cermets based on a 3 mol% yttria-stabilized tetragonal zirconia matrix that incorporates nanometric nickel inclusions (3YTZP/n-Ni), with 2.5, 5 and 10 vol.% of nickel content, has been studied by constant load tests in compression carried out in argon atmosphere. The microstructure of these composites consists of nanometric nickel inclusions homogeneously dispersed into a fine-grained zirconia matrix (about 200 nm). The microstructural and mechanical results obtained show that the creep behavior is controlled by the zirconia matrix as in 3YTZP-based cermets with micrometric Ni inclusions (3YTZP/μ-Ni); whereas the stress exponent values are similar to those of high-purity monolithic 3YTZPs, anomalous high values of the activation energy have been measured. The ceramic/metal interface plays a crucial role for creep properties; the strong TZP/n-Ni interface matching can be at the origin of these high values of the activation energies for creep.Ministerio de Educación y Ciencia MAT2003-04199-CO

    Anticancer applications of nanostructured silica-based materials functionalized with titanocene derivatives: Induction of cell death mechanism through TNFR1 modulation

    Get PDF
    This article belongs to the Special Issue Nanomaterials for Biomedical ApplicationsA series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti-Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells&#39; metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFalfa or the proinflammatory interleukin 1alfa secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.We gratefully acknowledge financial support from FEDER and the Ministerio de Economía y Competitividad, Spain (grant no. CTQ2015-66164-R) and the Romanian UEFISCDI Exploratory Research Project PN-III-P4-ID-PCE-2016-0870, IMPRESS. We would also like to thank Universidad Rey Juan Carlos and Banco de Santander for supporting our Research Group of Excellence QUINANOAP. Finally, we thank D. Pérez for valuable discussion and S. Carralero and C. Forcé for their assistance with solid-state NMR experiments
    corecore