417 research outputs found

    Quantum Master Equation of Particle in Gas Environment

    Full text link
    The evolution of the reduced density operator ρ\rho of Brownian particle is discussed in single collision approach valid typically in low density gas environments. This is the first succesful derivation of quantum friction caused by {\it local} environmental interactions. We derive a Lindblad master equation for ρ\rho, whose generators are calculated from differential cross section of a single collision between Brownian and gas particles, respectively. The existence of thermal equilibrium for ρ\rho is proved. Master equations proposed earlier are shown to be particular cases of our one.Comment: 6 pages PlainTeX, 23-March-199

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Secular trends in adiposity and musculoskeletal dimensions of elite heavyweight boxers between 1889 and 2019

    Get PDF
    Purpose: With improving nutrition and health, athletes have grown taller and heavier over the past century. Since there is no weight restriction in the heavyweight class, secular changes in anthropometric measurements of heavyweight boxers may mirror those of contemporary general populations. Objectives: We aimed to (1) examine secular trends in adiposity and musculoskeletal measurements in heavyweight boxers, (2) determine anthropometric differences between champions and unsuccessful challengers. Methods: Detailed demographics taken at time of contest (first official World Championship to current contest: 1889–2019) were collected from media archives. Results: All 237 boxers (83 champions, 154 challengers) contesting a recognised heavyweight World Championships were identified. They had mean (± SD) age = 28.9 ± 4.1 years, height = 187.3 ± 6.5 cm, reach = 195.2 ± 9.4 cm, weight = 97.5 ± 11.5 kg, BMI = 27.8 ± 2.4 kg/m2 and waist = 87.9 ± 6.2 cm. Contest years explained 25.9% (p < 0.001) of the variance in BMI for champions and 30.9% (p < 0.001) for challengers, 9.1% (p < 0.071) in WC for champions and 19.9% (p < 0.001) for challengers. Contest years correlated with height (r = 0.531, p < 0.001), reach (r = 0.341, p < 0.001), weight (r = 0.603, p < 0.001) and BMI (r = 0.370, p = 0.001) among all documented boxers, and with waist only in challengers (r = 0.349, p < 0.001) but not in champions (r = 0.078, p = 0.509). Compared with challengers, champions had greater stature by + 3.4 cm (p < 0.001), reach + 3.6 cm (p = 0.005) and weight + 3.7 kg (p = 0.017), with similar BMI and waist. Champions had larger biceps and forearms but did not differ from challengers in other musculoskeletal dimensions. Conclusions: Over 130 years elite heavyweight boxers have increased in size (BMI) and reach but waists in champions have remained static. Being heavier, taller with longer and bigger arms, but with similar in BMI and waist, appear to be differentiating factors between champions and challengers

    A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC

    Get PDF
    The direct simulation Monte Carlo (DSMC) method is a stochastic approach to solve the Boltzmann equation and is built on various numerical schemes for transport, collision and sampling. This work aims to compare and contrast two popular O(N) DSMC collision schemes - no-time-counter (NTC) and majorant collision frequency (MCF) - with the goal of identifying the fundamental differences. MCF and NTC schemes are used in DSMC simulations of a spatially homogeneous equilibrium gas to study convergence with respect to various collision parameters. While the MCF scheme forces the reproduction of the exponential distribution of time between collisions, the NTC scheme requires larger number of simulators per cell to reproduce this Poisson process. The two collision schemes are also applied to the spatially homogeneous relaxation from an isotropic non-Maxwellian given by the Bobylev exact solution to the Boltzmann equation. While the two schemes produce identical results at large times, the initial relaxation shows some differences during the first few timesteps

    Master-equations for the study of decoherence

    Full text link
    Different structures of master-equation used for the description of decoherence of a microsystem interacting through collisions with a surrounding environment are considered and compared. These results are connected to the general expression of the generator of a quantum dynamical semigroup in presence of translation invariance recently found by Holevo.Comment: 10 pages, latex, no figures, to appear in Int. J. Theor. Phy

    Quality of a Which-Way Detector

    Full text link
    We introduce a measure Q of the "quality" of a quantum which-way detector, which characterizes its intrinsic ability to extract which-way information in an asymmetric two-way interferometer. The "quality" Q allows one to separate the contribution to the distinguishability of the ways arising from the quantum properties of the detector from the contribution stemming from a-priori which-way knowledge available to the experimenter, which can be quantified by a predictability parameter P. We provide an inequality relating these two sources of which-way information to the value of the fringe visibility displayed by the interferometer. We show that this inequality is an expression of duality, allowing one to trace the loss of coherence to the two reservoirs of which-way information represented by Q and P. Finally, we illustrate the formalism with the use of a quantum logic gate: the Symmetric Quanton-Detecton System (SQDS). The SQDS can be regarded as two qubits trying to acquire which way information about each other. The SQDS will provide an illustrating example of the reciprocal effects induced by duality between system and which-way detector.Comment: 10 pages, 5 figure

    Signatures of non-locality in the first-order coherence of the scattered light

    Get PDF
    The spatial coherence of an atomic wavepacket can be detected in the scattered photons, even when the center-of-mass motion is in the quantum coherent superposition of two distant, non-overlapping wave packets. Spatial coherence manifests itself in the power spectrum of the emitted photons, whose spectral components can exhibit interference fringes as a function of the emission angle. The contrast and the phase of this interference pattern provide information about the quantum state of the center of mass of the scattering atom.Comment: 5 pages, one figure, submitted to Laser Physics, special issue in memory of Herbert Walthe

    Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States

    Full text link
    As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρss\rho_{ss}, is more natural. In the preceding paper we concentrated upon whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ\chi of the bosons in the laser mode, and the excess phase noise ν\nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0\nu=\chi=0), the most robust states are coherent states. As the phase noise ν\nu or phase dispersion χ\chi is increased, the most robust states become increasingly amplitude-squeezed. We find scaling laws for these states. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR states having a well-defined coherent amplitude. This lends support to the idea that robust PR ensembles are the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as Part II of a two-part paper. The original version of quant-ph/9906125 is shortly to be replaced by a new version which is Part I of the two-part paper. This paper (Part II) also contains some material from the original version of quant-ph/990612

    Robust unravelings for resonance fluorescence

    Get PDF
    Monitoring the fluorescent radiation of an atom unravels the master equation evolution by collapsing the atomic state into a pure state which evolves stochastically. A robust unraveling is one that gives pure states that, on average, are relatively unaffected by the master equation evolution (which applies once the monitoring ceases). The ensemble of pure states arising from the maximally robust unraveling has been suggested to be the most natural way of representing the system [H.M. Wiseman and J.A. Vaccaro, Phys. Lett. A {\bf 250}, 241 (1998)]. We find that the maximally robust unraveling of a resonantly driven atom requires an adaptive interferometric measurement proposed by Wiseman and Toombes [Phys. Rev. A {\bf 60}, 2474 (1999)]. The resultant ensemble consists of just two pure states which, in the high driving limit, are close to the eigenstates of the driving Hamiltonian Ωσx/2\Omega\sigma_{x}/2. This ensemble is the closest thing to a classical limit for a strongly driven atom. We also find that it is possible to reasonably approximate this ensemble using just homodyne detection, an example of a continuous Markovian unraveling. This has implications for other systems, for which it may be necessary in practice to consider only continuous Markovian unravelings.Comment: 12 pages including 5 .eps figures, plus one .jpg figur
    corecore