99 research outputs found

    Local Suppression and Splitting Techniques for Privacy Preserving Publication of Trajectories

    Get PDF
    postprin

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Reasoning mechanism for cardinal direction relations

    Get PDF
    In the classical Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space relative to an arbitrary single-piece region, a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Constraints Model [9], [10] these cardinal directions are decomposed into sets corresponding to horizontal and vertical constraints. Composition is computed for these sets instead of the typical individual cardinal directions. In this paper, we define several whole and part direction relations followed by showing how to compose such relations using a formula introduced in our previous paper [10]. In order to develop a more versatile reasoning system for direction relations, we shall integrate mereology, topology, cardinal directions and include their negations as well. © 2010 Springer-Verlag

    Positions, Regions, and Clusters: Strata of Granularity in Location Modelling

    Full text link
    Abstract. Location models are data structures or knowledge bases used in Ubiquitous Computing for representing and reasoning about spatial relationships between so-called smart objects, i.e. everyday objects, such as cups or buildings, containing computational devices with sensors and wireless communication. The location of an object is in a location model either represented by a region, by a coordinate position, or by a cluster of regions or positions. Qualitative reasoning in location models could advance intelligence of devices, but is impeded by incompatibilities between the representation formats: topological reasoning applies to regions; directional reasoning, to positions; and reasoning about set-membership, to clusters. We present a mathematical structure based on scale spaces giving an integrated semantics to all three types of relations and representations. The structure reflects concepts of granularity and uncertainty relevant for location modelling, and gives semantics to applications of RCC-reasoning and projection-based directional reasoning in location models

    Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups

    MOBIHIDE: A mobilea peer-to-peer system for anonymous location-based queries

    No full text
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)4605 LNCS221-23
    corecore