Reasoning Mechanism for Cardinal Direction Relations

Ah-Lian Kor ${ }^{1}$ and Brandon Bennett ${ }^{2}$
${ }^{1}$ Arts Environment and Technology Faculty, Leeds Metropolitan University, Headingley Campus, Leeds LS6 3QS, UK
${ }^{2}$ School of Computing, Leeds University, Leeds LS2 9JT, UK
A.Kor@leedsmet.ac.uk, Brandon@Comp.leeds.ac.uk

Abstract

In the classical Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space relative to an arbitrary single-piece region, a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Constraints Model [9], [10] these cardinal directions are decomposed into sets corresponding to horizontal and vertical constraints. Composition is computed for these sets instead of the typical individual cardinal directions. In this paper, we define several whole and part direction relations followed by showing how to compose such relations using a formula introduced in our previous paper [10]. In order to develop a more versatile reasoning system for direction relations, we shall integrate mereology, topology, cardinal directions and include their negations as well.

Keywords: Cardinal directions, composition table, mereology, topology, qualitative spatial reasoning, vertical and horizontal constraints model.

1 Introduction

Cardinal directions are generally used to describe relative positions of objects in large-scale spaces. The two classical models for reasoning about cardinal direction relations are the cone-shaped and projection-based models [6] where the latter forms the basis of our Horizontal and Vertical Constraints Model.

Composition tables are typically used to make inferences about spatial relations between objects. Work has been done on the composition of cardinal direction relations of points [6], [7], [13] which is more suitable for describing positions of point-like objects in a map. Goyal et. al [8] used the direction-relation matrix to compose cardinal direction relations for points, lines as well as extended objects. Skiadopoulos et. al [15] highlighted some of the flaws in their reasoning system and thus developed a method for correctly computing cardinal direction relations. However, the set of basic cardinal relations in their model consists of 218 elements which is the set of all disjunctions of the nine cardinal directions. In our Horizontal and Vertical Constraints Model, the nine cardinal directions are partitioned into sets based on horizontal and vertical constraints. Composition is computed for these sets instead of the individual cardinal directions, thus helping collapse the typical disjunctive relations into smaller sets. We employed the constraint network of binary direction relations to evaluate the consistency of the composed set relations. Ligozat
[11] has worked on constraint networks for the individual tiles but not on their corresponding vertical and horizontal sets. Some work relating to hybrid cardinal direction models has been done. Escrig et.al [5] and Clementini et.al [2] combined qualitative orientation combined with distance, while Sharma et. al [14] integrated topological and cardinal direction relations. In order to come up with a more expressive model for direction relations, have extended existing spatial language for directions by integrating mereology, topology, and cardinal direction relations. Additionally, to develop a more versatile reasoning system for such relations, we have included their negations as well.

2 Cardinal Directions Reasoning Model

2.1 Projection-Based Model

In the Projection-based Model for cardinal directions [6], a two-dimensional Euclidean space of an arbitrary single-piece region, a, is partitioned into nine tiles. They are North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral Zone, O(a); East, E(a); South-West, SW(a); South, S(a); and South-East, SE(a). In this paper, we only address finite regions which are bounded. Thus every region will have a minimal bounding box with specific minimum and maximum x (and y) values (in Table 1). The boundaries of the minimal bounding box of a region a is illustrated in Figure 1. The definition of the nine tiles in terms of the boundaries of the minimal bounding box is listed below. Note that all the tiles are regarded as closed regions. Thus neighboring tiles share common boundaries but their interior will remain disjoint.

Table 1. Definition of Tiles

Definition of tiles	
$\mathrm{N}(\mathrm{a}) \equiv\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{Xmin}(\mathrm{a}) \leq \mathrm{x} \leq \mathrm{Xmax}(\mathrm{a}) \wedge \mathrm{y} \geq \mathrm{Y} \max (a)\}$	$\mathrm{SW}(\mathrm{a}) \equiv\{\langle\mathrm{x}, \mathrm{y}\rangle \mid \mathrm{x} \leq \mathrm{Xmin}(a) \wedge \mathrm{y} \leq \mathrm{Ymin}(a)\}$
$\mathrm{NE}(\mathrm{a})=\{\langle\mathrm{X}, \mathrm{y}\rangle \mid \mathrm{x} \geq \mathrm{Xmax}(\mathrm{a}) \wedge \mathrm{y} \geq \mathrm{Ymax}(a)\}$	$E(a) \equiv\{\langle x, y\rangle \mid x \geq X \max (a) \wedge Y \min (a) \leq y \leq Y \max (a)\}$
$N W(a) \equiv\{\langle x, y\rangle \mid x \leq X \min (a) \wedge \mathrm{y} \geq \mathrm{Ymax}(a)\}$	$W(a) \equiv\{(x, y\rangle \mid x \leq X \min (a) \wedge Y \min (a) \leq y \leq Y \max (a)\}$
$\begin{aligned} & S(a) \equiv\{\langle x, y\rangle \mid X \min (a) \leq x \leq X \max (a) \wedge y \leq Y \min (a)\} \\ & S E(a) \equiv\{\langle x, y\rangle \mid x \geq X \max (a) \wedge y \leq Y \min (a)\} \end{aligned}$	$\mathrm{O}(\mathrm{a}) \equiv\{\langle\mathrm{X}, \mathrm{y}\rangle \mid \mathrm{Xmin}(a) \leq \mathrm{x} \leq \mathrm{Xmax}(\mathrm{a}) \wedge \mathrm{Ymin}(a) \leq \mathrm{y} \leq \mathrm{Ymax}(a)\}$

Table 2. Definitions for the Horizontal and Vertical Constraints Model

Definitions for the Horizontal and Vertical Constraints Model	
WeakNorth(a) is the region that covers the tiles	WeakWest(a) is the region that covers the tiles SW(a),
$\mathrm{NW}(\mathrm{a}), \mathrm{N}(\mathrm{a})$, and $\mathrm{NE}(\mathrm{a})$; WeakNorth(a) \equiv NW(a)	W (a), and NW (a); WeakWest $(a) \equiv \operatorname{SW}(a) \cup W(a)$
$\cup N(a) \cup N E(a)$.	$\cup N W(a)$.
Horizontal (a) is the region that covers the tiles $\mathrm{W}(a)$, $\mathrm{O}(a)$, and $\mathrm{E}(a)$; Horizontal $(a) \equiv \mathrm{W}(a), \mathrm{O}(a)$, and $\mathrm{E}(a)$.	Vertical(a) is the region that covers the tiles $\mathrm{S}(\mathrm{a}), \mathrm{O}(\mathrm{a})$, and $\mathrm{N}(a)$; Vertical $(a) \equiv \mathrm{S}(a) \cup \mathrm{O}(a) \cup \mathrm{N}(a)$.
WeakSouth (a) is the region that covers the tiles	WeakEast (a) is the region that covers the tiles $N E(a)$,
$\operatorname{SW}(a), S(a)$, and $\operatorname{SE}(a) ;$ WeakSouth $(a) \equiv \operatorname{SW}(a)$ $\cup S(a) \cup S E(a)$.	$\mathrm{E}(\mathrm{a})$, and $\mathrm{SE}(a) ;$ WeakEast $(a) \equiv \mathrm{NE}(a) \cup \mathrm{E}(a) \cup \mathrm{SE}(a)$.

2.2 Horizontal and Vertical Constraints Model

In the Horizontal and Vertical Constraints Model [9, 10], the nine tiles are collapsed into six sets based on horizontal and vertical constraints as shown in Figure 1. The definitions of the partitioned regions are shown in Table 2 and the nine cardinal direction tiles can be defined in terms of horizontal and vertical sets (see Table 3).

Table 3. Definition of the tiles in terms of Horizontal and Vertical Constraints Sets

$\begin{aligned} & \text { NW }(a) \equiv \text { WeakNorth }(a) \\ & \cap \text { WeakWest }(a) \end{aligned}$	$\begin{aligned} & \text { W }(a) \equiv \text { Horizontal }(a) \\ & \\ & \cap \text { WeakWest }(a) \end{aligned}$	$\begin{aligned} & \text { SW }(a) \equiv \text { WeakSouth }(a) \\ & \\ & \cap \text { WeakWest }(a) \end{aligned}$
$\mathrm{N}(\mathrm{a}) \equiv$ WeakNorth $(a) \cap \operatorname{Vertical}(a)$	$\mathrm{O}(\mathrm{a}) \equiv$ Horizontal (a) \cap Vertical (a)	$\mathrm{S}(\mathrm{a}) \equiv$ WeakSouth $(a) \cap \operatorname{Vertical}(\mathrm{a})$
$\mathrm{NE}(a)=$ WeakNorth (a) \cap WeakEast(a)	$E(a) \equiv$ Horizontal (a) \cap WeakEast(a)	$\operatorname{SE}(a)=$ WeakSouth (a) WeakEast(a)

Fig.1. Horizontal and Vertical Sets of Tiles

Fig. 2. Spatial Relationships between regions

2.3 RCC Binary Relations

In this paper, we shall use the RCC-5 [3] JPED binary topological relations for regions. They are: $\operatorname{PP}(x, y)$ which means ' x is a proper part of $y^{\prime} ; \operatorname{PPi}(x, y)$ which means ' y is a proper part of x '; $\mathrm{EQ}(x, y)$ which means ' x is identical with y '; $\mathrm{PO}(x, y)$ which means ' x partially overlaps y '; $\operatorname{DR}(x, y)$ which means ' x is discrete from y '. The relations EQ, PO, and DR are symmetric while the rest are not. PPi is also regarded as the inverse of PP. However, in this paper, the relationship PPi will not be considered because all tiles (except for tile O) are unbounded.

2.4 Whole or Part Cardinal Direction Relations

In our previous paper [8], we created an expressive hybrid mereological, topological and cardinal direction relation model. Here we shall improve the definitions of $A_{\mathbf{R}}(b$, a) which means that the whole destination region, b , is in the tile $\mathbf{R}(a)$ while $P_{\mathbf{R}}(b, a)$ means that part of b is in tile $\mathbf{R}(a)$.

Cardinal direction relations defined in terms of tiles

In this section, we shall introduce several terms to extend the existing spatial language for cardinal directions to facilitate a more versatile reasoning about their relations. We shall use RCC-5 relations to define three categories of direction relations: whole, part, and no part. $A_{N}(b, a)$ means whole of b is in the North tile of $a: A_{N}(b, a)$ $\equiv \operatorname{PP}(b, \mathrm{~N}(a)) \vee \mathrm{EQ}(b, \mathrm{~N}(a))$

Here we adopt the natural language meaning for the word part which is 'some but not all. $P_{M}(b, a)$ represents part of b is in the North tile of a. When part of b is in the North tile of a, this means that part of b covers the North tile and possibly one or more of the complementary tiles of North.

$$
P_{N}(b, a) \equiv \mathrm{PO}(b, \mathrm{~N}(a))
$$

We shall use the Skiadopoulos et. al [2004] definition of multi-tile cardinal direction relations. As an example, if part of b is in the North tile and the remaining part of b is in the NorthWest tile of a (or in other words, part of b is only in the North and NorthWest tiles of a) and vice versa, then its representation is

$$
\begin{aligned}
& P_{N: N W}(b, a) \equiv \mathrm{PO}(b, \mathrm{~N}(a)) \wedge \mathrm{PO}(b, \mathrm{NW}(a)) \wedge \mathrm{DR}(b, \mathrm{NE}(a)) \wedge \mathrm{DR}(b, \mathrm{~W}(a)) \wedge \mathrm{DR}(b, \mathrm{O}(a)) \\
& \wedge \mathrm{DR}(b, \mathrm{E}(a)) \wedge \mathrm{DR}(b, \mathrm{SE}(a)) \wedge \mathrm{DR}(b, \mathrm{~S}(a)) \wedge \mathrm{DR}(b, \mathrm{SW}(a)) \\
& \text { or } P_{N: N W}(b, a) \equiv A_{N}(b 1, a) \wedge A_{N W}(b 2, a) \text { where } b=b 1 \cup b 2 .
\end{aligned}
$$

$\Phi_{N}(b, a)$ means no part of b is in the North tile of a. When b has no part in the North tile of a, this means that b could be in one or more the complementary tiles of North so

$$
\Phi_{\Lambda}(b, a) \equiv \operatorname{DR}(b, \mathrm{~N}(a))
$$

If no part of b is in North and Northwest tiles (or in other words, b could only be in one or more of the complementary tiles of North and Northwest), then the representation is

$$
\Phi_{N: N W}(b, a) \equiv \operatorname{DR}(b, \mathrm{~N}(a)) \wedge \operatorname{DR}(b, \mathrm{NW}(a))
$$

Assume $U=\{N, N W, N E, O, W, E, S, S W, S E\}$. The general definition of the following direction relations are in Table 4:

Table 4. Definition of direction relations

D1. $A_{\mathrm{R}}(b, a) \equiv \mathrm{PP}(b, \mathrm{R}(a)) \vee \mathrm{EQ}(b, \mathrm{R}(a))$ where $R \in U$ D2. $P_{\mathrm{R}}(b, a) \equiv \mathrm{PO}(b, \mathrm{R}(a))$ where $\mathrm{R} \in \mathrm{U}$ D3.1. $P_{\mathrm{R} 1 \ldots: \mathrm{Rn}}(b, a) \equiv \mathrm{PO}(b, \mathrm{R} 1(a))$ $\wedge \ldots \wedge \mathrm{PO}(b, \operatorname{Rn}(a)) \wedge \mathrm{DR}\left(b, \mathrm{R}^{\prime}(a)\right)$ where $R 1, \ldots, R n \in U, 1 \leq n \leq 9$ and $R^{\prime} \in U-\{R 1, \ldots, R n\}$ D3.1. $P_{\mathrm{R} 1 \cdots: \mathrm{Rn}}(b, a) \equiv A_{\mathrm{R} 1}(b 1, a) \wedge \ldots \wedge A_{R n}(b n, a)$ where $b=b 1 \cup \ldots \cup b n$, where $\mathrm{R} 1, \ldots, \mathrm{Rn} \in \mathrm{U}$ and $1 \leq n \leq 9$	D4. $\Phi_{\mathrm{R}}(b, a) \equiv \mathrm{DR}(b, \mathrm{R}(a))$ where $\mathrm{R} \in \mathrm{U}$ D5. $\Phi_{\mathrm{R} 1 \ldots \mathrm{Rn}}(b, a) \equiv \operatorname{DR}(b, \operatorname{R1}(a))$ $\wedge \ldots \wedge \mathrm{DR}(b, \mathrm{Rn}(a))$ where $\mathrm{R}, \ldots, \mathrm{Rn} \in \mathrm{U}$ and 1 $\leq \mathrm{n} \leq 9$. D6. $\neg A_{R}(b, a) \equiv \Phi_{R}(b, a) \vee P_{R}(b, a)$ where R $\in U$. D7. $\neg P_{R}(b, a) \equiv \mathrm{A}_{R}(b, a) \vee \Phi_{R}(b, a)$ where R $\in U$. D8. $\neg \Phi_{R}(b, a) \equiv A_{R}(b, a) \vee P_{R}(b, a)$ where $R \in U$.

Negated cardinal direction relations defined in terms of tiles

In this section, we shall define three categories of negated cardinal direction relations: not whole, not part, and not no part. Negated direction relations could be used when reasoning with incomplete knowledge. Assume B is a set of the relations, $\{\mathrm{PP}, \mathrm{EQ}$, $\mathrm{PO}, \mathrm{DR}\} . \neg A_{N}(b, a)$ means that b is not wholly in North tile of a . It is represented by:

$$
\neg A_{N}(b, a) \equiv \neg[\mathrm{PP}(b, \mathrm{~N}(a)) \vee \mathrm{EQ}(b, \mathrm{~N}(a))]
$$

Use De Morgan's Law and we have $\neg A_{N}(b, a) \equiv \neg P P(b, N(a)) \wedge \neg E Q(b, N(a))$
The complement of PP and EQ is $\{P O, D R\}$ so the following holds:

$$
\neg A_{N}(b, a) \equiv[\mathrm{PO}(b, \mathrm{~N}(a))] \vee \mathrm{DR}(b, \mathrm{~N}(a))
$$

Use D2 and D4 and we have part of b is not or no part of b is in North tile of a so

$$
\neg A_{M}(b, a) \equiv \Phi_{M}(b, a) \vee P_{M}(b, a)
$$

$\neg P_{N}(b, a)$ means b is not partly in North tile of a so $\neg P_{N}(b, a) \equiv \neg \mathrm{PO}(b, N(a))$
The complement of PO is $\{\mathrm{PP}, \mathrm{EQ}, \mathrm{DR}\}$ so the following holds:

$$
\neg P_{N}(b, a) \equiv[\operatorname{PP}(b, N(a)) \vee E Q(b, N(a))] \vee \mathrm{DR}(b, \mathrm{~N}(a))
$$

Use D1, D4, we have $\neg P_{N}(b, a) \equiv A_{N}(b, a) \vee \Phi_{N}(b, a)$
$\rightarrow \Phi \mathcal{}(b, a)$ means not no part of b is in the North tile of a. Thus
$\neg \Phi_{N}(b, a) \equiv \neg \mathrm{DR}(b, \mathrm{~N}(a))$ or $\neg \Phi_{N}(b, a) \equiv[\mathrm{PP}(b, \mathrm{~N}(a)) \vee \mathrm{EQ}(b, \mathrm{~N}(a))] \vee \mathrm{PO}(b, \mathrm{~N}(a))$
Use D1, D2 and D4, we have the following: $\neg \Phi_{N}(b, a) \equiv A_{N}(b, a) \vee P_{N}(b, a)$
Assume $\mathrm{U}=\{\mathrm{N}, \mathrm{NW}, \mathrm{NE}, \mathrm{O}, \mathrm{W}, \mathrm{E}, \mathrm{S}, \mathrm{SW}, \mathrm{SE}\}$. The general definition of the negated direction relations are in Table 4. Here we shall give an example to show how some of the aforementioned whole-part relations could be employed to describe the spatial relationships between regions. In Figure 2, we shall take the village as the referent region while the rest will be destination regions. The following is a list of possible direction relations between the village and the other regions in the scene:

- A_{M} (forest,village): The whole forest is in the North tile of the village and Ass(island,village): the whole island is in the SouthEast tile of the village.
- $P_{\text {nw:w:sw:s:se::(lake,village): Part of the lake is in the NorthWest, West, SouthWest, }}$ South, SouthEast and East tiles of the village.
- Фо:n:ne(lake,village): This is another way to represent the direction relationship between the lake and village. t means no part of the lake is in the Neutral, North and NorthEast tiles of the village.
- Po:n:me:nw:w:ww:s:se:E(grassland,village): Part of the grassland is in all the tiles of the village.
Next we shall show how negated direction relations could be used to represent incomplete knowledge about the direction relations between two regions. Assume that we have a situation where the hills are not wholly in the North tile of the village. We can interpret such incomplete knowledge using D6, part or no part direction relations: P_{N} (hills, village) $\vee \Phi \wedge$ (hills, village). In other words, either there is no hilly region is in the North tile of the village or part of the hilly region covers the North tile of the village. If we are given this piece of information 'it is not true that no part of the lake lies in the North tile of the village', we shall use D8 to interpret it. Thus we have the following possible relations: A_{N} (lake,village) $\vee P_{N}$ (lake,village). This means that the whole or only part of the lake is in the North tile of the village.

2.5 Cardinal Direction Relations Defined in Terms of Horizontal or Vertical Constraints

The definitions of cardinal direction relations expressed in terms of horizontal and vertical constraints are similar to those shown in the previous section (D1 to D8). The only difference is that the universal set, U is $\{$ WeakNorth (WN), Horizontal (H), WeakSouth (WS), WeakEast (WE), Vertical (V), WeakWest (WW) $\}$.

Whole and part cardinal direction relations defined in terms of horizontal and vertical constraints

In this section, we use examples to show how whole and part cardinal direction relations could be represented in terms of horizontal and vertical constraints. We shall exclude the inverse and negated relations for reasons that will be given in the later part of this paper. We shall use abbreviations $\{W N, H, W S\}$ for $\{$ WeakNorth, Horizontal, WeakSouth\} and $\{W E, V, W W\}$ for $\{$ WeakEast, Vertical, WeakWest\} respectively.

D9. $A_{N}(b, a) \equiv A_{w \sim}(b, a) \wedge A_{\vee}(b, a)$
D10. $P_{N}(b, a) \equiv P_{w N}(b, a) \wedge P_{V}(b, a)$
D11. $P_{N}: N w(b, a) \equiv A_{N}\left(b_{1}, a\right) \wedge A_{N w}\left(b_{2}, a\right) \equiv\left[A_{w \sim}\left(b_{1}, a\right) \wedge A_{v}\left(b_{1}, a\right)\right] \wedge\left[A_{w N}\left(b_{2}, a\right) \wedge A_{w w}\left(b_{2}, a\right)\right]$ where $b=b_{1} \cup b_{2}$
D12. $\Phi_{\wedge}(b, a) \equiv \Phi_{\omega v}(b, a) \wedge \Phi \vee(b, a)$
D13. $\Phi_{N}: N_{v}(b, a) \equiv \Phi_{N}(b, a) \wedge \Phi_{N}(b, a) \equiv\left[\Phi w_{N}(b, a) \wedge \Phi v(b, a)\right] \wedge\left[\Phi w_{N}(b, a) \wedge \Phi w_{v}(b, a)\right]$
Next we shall use the part relation as a primitive for the definitions of the whole and no part relations. Once again assume $\mathrm{U}=\{\mathrm{N}, \mathrm{NW}, \mathrm{NE}, \mathrm{O}, \mathrm{W}, \mathrm{E}, \mathrm{S}, \mathrm{SW}, \mathrm{SE}\}$. D14.1. $A_{R}(b, a) \equiv P_{R}(b, a) \wedge\left[\neg P_{R 1}(b, a) \wedge \neg P_{R 2}(b, a) \wedge \ldots \wedge \neg P_{R m}(b, a)\right]$ where $R \in U, R m \in U-\{R\}$ (which is the complement of R), and $1 \leq m \leq 8$. As an example,
$A_{N}(b, a) \equiv P_{N}(b, a) \wedge\left[\neg P_{N E}(b, a) \wedge \neg P_{N m}(b, a) \wedge \neg P_{w}(b, a) \wedge \neg P_{o}(b, a) \wedge \neg P_{E}(b, a) \wedge \neg P s w(b, a) \wedge \neg P_{s}(b, a)\right.$ $\left.\wedge \neg P_{S E}(b, a)\right]$
D14.2. $A_{\text {нR }}(b, a) \equiv P_{\text {нR }}(b, a) \wedge\left[\neg P_{\text {нRi }}(b, a) \wedge \ldots \wedge \neg P_{\text {нR }}(b, a)\right]$ where $H R \in\{\mathrm{WN}, \mathrm{H}, \mathrm{WS}\}, \mathrm{HRm}$ is the complement of HR , and $1 \leq \mathrm{n} \leq 3$.As an example, $A_{w \sim}(b, a) \equiv P_{w N}(b, a) \wedge\left[\neg P_{H}(b, a) \wedge \neg P_{w s}(b, a)\right]$ D14.3. $A_{\text {vg }}(b, a) \equiv \operatorname{Pvg}(b, a) \wedge\left[\neg P_{\text {vki }}(b, a) \wedge \ldots \wedge \neg P_{\text {vgr }}(b, a)\right]$ where $\operatorname{VR} \in\{W W, \mathrm{~V}, \mathrm{WE}\}, \mathrm{VRm}$ is the complement of VR), and $1 \leq \mathrm{n} \leq 3$. As an example, $\operatorname{Aww}(b, a) \equiv P_{w w}(b, a) \wedge\left[\neg P \vee(b, a) \wedge \neg P_{w \in}(b, a)\right]$ D15.1. $\Phi_{R}(b, a) \equiv \neg P_{R}(b, a) \wedge\left[P_{R 1}(b, a) \vee P_{R 2}(b, a) \vee \ldots \vee P_{R m}(b, a)\right]$ where $R \in U, R m \in U-\{R\}$, and $1 \leq \mathrm{m} \leq 8$. As an example,
$\Phi_{N}(b, a) \equiv \neg P_{N}(b, a) \wedge\left[P_{N E}(b, a) \vee P_{N m}(b, a) \vee P_{w}(b, a) \vee P_{o}(b, a) \vee P_{E}(b, a) \vee P_{s w}(b, a) \vee P_{s}(b, a) \vee P_{s E}(b, a)\right]$
D15.2.Фня $(b, a) \equiv \neg P_{\text {нв }}(b, a) \wedge\left[P_{\text {нRI }}(b, a) \vee P_{\text {нR2 }}(b, a)\right]$ where $H R \in\{W N, H, W S\}$, while HR1 and HR2 constitute its complement. As an example, $\Phi \Phi_{w N}(b, a) \equiv \neg P_{w N}(b, a) \wedge\left[P_{H}(b, a) \vee P_{w s}(b, a)\right]$. D15.3. $\Phi_{\text {VA }}(b, a) \equiv \neg \operatorname{PVA}(b, a) \wedge\left[P_{\text {VBI }}(b, a) \vee P_{\text {VR2 }}(b, a)\right]$ where $\operatorname{VR} \in\{W W, \mathrm{~V}, \mathrm{WE}\}$, while VR1 and VR2 constitute its complement. As an example, $\Phi w w(b, a) \equiv \neg P_{w w}(b, a) \wedge\left[P \vee(b, a) \vee P_{w \in}(b, a)\right]$.

3 Composition Table for Cardinal Directions

Ligozat (1988) obtained the outcome of the composition of all the nine tiles in a Projection Based Model for point objects by composing the constraints $\{<,=,>\}$. However, our composition tables (Tables 5 and 6) are computed using the vertical and horizontal constraints of the sets of direction relations. We shall abstract several composition rules in Table 5. Similar rules apply to Table 6. Assume U is \{ $A w E, A v$, Aww \}. WeakEast(WE) is considered the converse of WeakWest (WW) and vice versa.
Rule 1 (Identity Rule): $R \wedge R=R$ where $R \in U$.
Rule 2 (Converse Rule): $\mathrm{S} \wedge \mathrm{S}^{\prime}=\mathrm{U}, A_{V} \wedge \mathrm{~S}=P_{V} \vee P_{S}$ where $\mathrm{S} \in\left\{A_{W E}, A_{w w}\right\}$ and S^{\prime} is its converse.

Here we shall introduce several axioms that are necessary for the direction reasoning mechanism. In the next section we shall show how to apply these axioms and some logic rules for making inferences about direction relations.

Axiom 1. $A_{f}\left(b_{1}, a\right) \wedge A_{R}\left(b_{2}, a\right) \wedge \ldots \wedge A_{R}\left(b_{k}, a\right) \rightarrow A_{R}(b, a)$ where $R \in U, 1 \leq \mathrm{k} \leq 9$ and $b_{1} \cup b_{2} \cup \ldots \cup b_{k}=b$
Axiom 2. $A_{R 1}\left(b_{1}, a\right) \wedge A_{R 2}\left(b_{2}, a\right) \wedge \ldots \wedge A_{R n}\left(b_{k}, a\right) \rightarrow P_{R 1: R 2: \ldots R n}(b, a)$ where $\mathrm{Rn} \in \mathrm{U}$, $1 \leq k \leq 9$ and $b_{1} \cup b_{2} \cup \ldots \cup b_{k}=b$
Axiom 3. $P_{f}\left(c_{k}, a\right) \wedge P P\left(c_{k}, c\right) \rightarrow P_{R}(c, a)$ where $R \in U$, and $1 \leq k \leq 9$
Axiom 4. $\left[P_{R_{1}}\left(c_{1}, a\right) \wedge \operatorname{PP}\left(c_{1}, c\right)\right] \wedge\left[P_{R 2}\left(c_{2}, a\right) \wedge P P\left(c_{2}, c\right)\right] \wedge \ldots \wedge$ $\left[P_{R \swarrow}\left(c_{k}, a\right) \wedge \operatorname{PP}\left(c_{k}, c\right)\right] \rightarrow P_{R 1: R 2} \ldots: \beta k(c, a)$ where $1 \leq \mathrm{k} \leq 9$, and $R k \in U$.
Axiom 5. $A_{A}\left(c_{k}, a\right) \wedge P P\left(c_{k}, c\right) \rightarrow P_{R}(c, a)$ where $R \in U$, and $1 \leq k \leq 9$
Axiom 6. $\neg\left\{\left[P_{m w}\left(c_{1}, a\right) \wedge \operatorname{PP}\left(c_{1}, c\right)\right] \wedge\left[P w=\left(c_{2}, a\right) \wedge \operatorname{PP}\left(c_{2}, c\right)\right]\right\}$ where $c_{1} \cup c_{2}=c$ (because c is a single connected piece)
Axiom 7. $\neg\left\{\left[P_{w \sim}\left(c_{1}, a\right) \wedge \operatorname{PP}\left(c_{1}, c\right)\right] \wedge\left[P w_{s}\left(c_{2}, a\right) \wedge \operatorname{PP}\left(c_{2}, c\right)\right]\right\}$ where $c_{1} \cup c_{2}=c$ (because c is a single connected piece)

3.1 Formula for Computation of Composition

In our previous paper [10], we introduced a formula (obtained through case analyses) for computing the composition of cardinal direction relations. Here we shall modify the notations used for easy comprehension. Skiadopoulos et. al [15] introduced additional concepts such as rectangular versus nonrectangular direction relations, bounding rectangle, westernmost (etc...) to facilitate the composition of relations. They have separate formulae for the composition of rectangular and non-rectangular regions. However, in this paper we shall apply one formula for the composition of all types of direction relations. The basis of the formula is to first consider the direction relation between a and each individual part of b followed by the direction relation between each individual part of b and c. Assume that the region b covers one or more tiles of region a while region c covers one or more tiles of b. The direction relation between a and b is $R(b, a)$ while the direction relation between b and c is $S(c, b)$. The composition of direction relations could be written as follows:

$$
R(b, a) \wedge S(c, b)
$$

Firstly, establish the direction relation between a and each individual part of b.

$$
\begin{equation*}
R(b, a) \wedge S(c, b) \equiv\left[R_{1}\left(b_{1}, a\right) \wedge R_{2}\left(b_{2}, a\right) \ldots \wedge R_{k}\left(b_{k}, a\right)\right] \wedge[S(c, b)] \ldots \ldots \ldots \text { where } 1 \leq k \leq 9 . \tag{1}
\end{equation*}
$$

Consider the direction relation of each individual part of b and c. Equation (1)
becomes: $\left[R_{1}\left(b_{1}, a\right) \wedge S_{1}\left(c, b_{1}\right)\right] \wedge\left[R_{2}\left(b_{2}, a\right) \wedge S_{2}\left(c, b_{2}\right)\right] \wedge \ldots \wedge\left[R_{k}\left(b_{k}, a\right) \wedge S_{k}\left(c, b_{k}\right)\right] \ldots$ where $1 \leq k \leq 9 \ldots . .(2)$

3.2 Composition of Cardinal Direction Relations

Previously we have grouped the direction relations into three categories namely: whole, part, and no part. If we include their respective inverses and negations, there will be a total of 9 types of direction relations. However, we do not intend to delve into the composition of inverse and negated relations due to the high level of uncertainty involved. Typically, the inferences drawn would consist of the universal set of tiles, which is not beneficial. In this paper, we shall demonstrate several types of composition. The type of composition shown in this part of the paper involves the composition of vertical and horizontal sets which is different from Skiadopoulos et. al's work [15] involving the composition of individual tiles. Use Tables 5 and 6 to obtain the outcome of each composition. The meaning of the two following notations $U_{v}(c, a)$ and $U_{H}(c, a)$ are in Tables 5 and 6.

Table 5. Composition of Vertical Set Relations

		WeakEast	Vertical	WeakWest
		$A_{w E}(c, b)$	$A_{V}(c, b)$	$A_{w w}(c, b)$
WeakEast	$A_{w E}(b, a)$	$A_{w E}(c, a)$	$A_{w E}(c, a)$	$U_{V}(c, a)$
Vertical	$A_{V}(b, a)$	$P_{w E \vee} \vee \vee(c, a)$	$A_{V}(c, a)$	$P_{w w} P \vee V(c, a)$
WeakWest	$A_{w w}(b, a)$	$U_{V}(c, a)$	$A_{w w}(c, a)$	$A_{w w}(c, a)$

Note: $U_{v}(c, a)=\left[P_{w E}(c, a) \vee P_{V}(c, a) \vee P_{w w}(c, a)\right]$. Therefore the possible set of relations is $\left\{\left[A_{w E}(c, a), A_{v}(c, a), A_{w w}(c, a), P_{w e: v: w w}(c, a), P_{w e: v}(c, a), P_{w w: v}(c, a)\right\}\right.$.

Table 6. Composition of Horizontal Set Relations

		WeakNorth	Horizontal	WeakSouth
		$A_{w N}(c, b)$	$A_{H}(c, b)$	$A_{w s}(c, b)$
WeakNorth	$A_{w N}(b, a)$	$A_{w s}(c, a)$	$A_{w s}(c, a)$	$U_{H}(c, a)$
Horizontal	$A_{H}(b, a)$	$P_{w N} \vee P_{H}(c, a)$	$A_{H}(c, a)$	$P_{w S} \vee P_{H}(c, a)$
WeakSouth	$A_{w s}(b, a)$	$U_{H}(c, a)$	$A_{w s}(c, a)$	$A_{w s}(c, a)$

Note: $U_{H}(c, a)=\left[P_{w N}(c, a) \vee P_{H}(c, a) \vee P_{w s}(c, a)\right]$. Therefore the possible set of relations is

Example 1

Fig. 3. Spatial relationships among regions in Europe

In Figure 3, part of Ireland (b) is only in the South and SouthWest tiles of Iceland (a) while the part of Spain (c) is in the SouthWest, South and SouthEast tiles of Ireland. We have to make an inference about the direction relation between Iceland and Spain. We shall represent the information as:
Psw:s(Ireland,Iceland)^ $P_{s w: s: s E(\text { Spain,Ireland) }}$
Use the abbreviations a, b, c to represent Iceland, Ireland, and Spain respectively. The above expression is written as:

$$
P_{s w: s}(b, a) \wedge P_{s w: s: S E}(c, b) .
$$

\qquad (3a)

Firstly, establish the direction relation between a and each individual part of b. Use D3 and expression in (3a) becomes

$$
\begin{equation*}
\left[A \operatorname{sw}\left(b_{1}, a\right) \wedge A s\left(b_{2}, a\right)\right] \wedge[P s w: s: s E(c, b)] . \tag{3b}
\end{equation*}
$$

\qquad
Use the extended boundaries of part region b_{1} to partition c. As depicted in Figure 3, c is divided into 3 subregions (C_{11}, C_{12}, and C_{13}). Establish direction relations between these regions and b_{1}. We have $\operatorname{Asw}\left(c_{11}, b_{1}\right), A s\left(c_{12}, b_{1}\right)$, and $A s E\left(C_{13}, b_{1}\right)$.Repeat the same procedure for b_{2} and we have the following direction relations between b_{2} and its corresponding subregions:

$$
\operatorname{Asw}\left(c_{21}, b_{2}\right), A s\left(c_{22}, b_{2}\right) \text { and } A_{s E}\left(c_{23,}, b_{2}\right)
$$

Expression (3b) becomes:
$\left[A_{s w}\left(b_{1}, a\right) \wedge A_{s}\left(b_{2}, a\right)\right] \wedge\left\{\left[A_{s w}\left(c_{11}, b_{1}\right) \wedge A_{s}\left(c_{12}, b_{1}\right) \wedge A_{s E}\left(c_{13}, b_{1}\right)\right] \wedge\left[A_{s w}\left(c_{21}, b_{2}\right) \wedge A_{s}\left(c_{22}, b_{2}\right) \wedge A_{s \in}\left(c_{23}, b_{2}\right)\right]\right\} \ldots(3 c)$ Apply formula (2) into expression (3c) and we have

$$
\begin{align*}
& \left\{\left[\operatorname{Asw}\left(b_{1}, a\right) \wedge A s w\left(c_{11}, b_{1}\right)\right] \wedge\left[A_{s w}\left(b_{1}, a\right) \wedge A_{s}\left(c_{12}, b_{1}\right)\right] \wedge\left[A_{s w}\left(b_{1}, a\right) \wedge A_{s E}\left(C_{13}, b_{1}\right)\right]\right\} \wedge \\
& \left\{\left[A_{s}\left(b_{2}, a\right) \wedge A_{s w}\left(c_{2}, b_{2}\right)\right] \wedge\left[A_{s}\left(b_{2}, a\right) \wedge A_{s}\left(c_{22}, b_{2}\right)\right] \wedge\left[A_{s}\left(b_{2}, a\right) \wedge A_{s E}\left(C_{23}, b_{2}\right)\right]\right\} . \tag{3d}
\end{align*}
$$

We shall compute the vertical and horizontal constraints separately and apply formulae similar to D9.

Composition of Horizontal Constraints

$\left[\left[A w s\left(b_{1}, a\right) \wedge A w s\left(c_{11}, b_{1}\right)\right] \wedge\left[A w s\left(b_{1}, a\right) \wedge A w s\left(c_{12}, b_{1}\right)\right] \wedge\left[\operatorname{Aws}\left(b_{1}, a\right) A w s\left(c_{13}, b_{1}\right)\right]\right] \wedge$ $\left[\left[A w s\left(b_{2}, a\right) \wedge A w s\left(c_{21}, b_{2}\right)\right] \wedge\left[A w s\left(b_{2}, a\right) \wedge A w s\left(c_{22}, b_{2}\right)\right] \wedge\left[A w s\left(b_{2}, a\right) \wedge A w s\left(c_{23}, b_{2}\right)\right]\right]$
Use Table 6 and we have

$$
\left[A w s\left(C_{11}, a\right) \wedge A w s\left(C_{12}, a\right) \wedge A w s\left(C_{13}, a\right)\right] \wedge\left[A w s\left(C_{21}, a\right) \wedge A w s\left(C_{22}, a\right) \wedge A w s\left(C_{23}, a\right]\right.
$$

However, as shown earlier, $c_{11} \cup c_{12} \cup c_{13}=\equiv \mathrm{d} c_{21} \cup c_{22} \cup c_{23}=c$. Use Axiom 1 and the modus ponens inference rule ($\mathrm{P}, \mathrm{Q} ; \mathrm{P}, \square \mathrm{Q}$) and the above expression becomes $A w s(c, a) \wedge A w s(c, a)$ which equals $A w s(c, a)$.

Composition of Vertical Constraints

$$
\begin{aligned}
& {\left[\left[A_{w w}\left(b_{1}, a\right) \wedge A_{w w}\left(c_{11}, b_{1}\right)\right] \wedge\left[A_{w w}\left(b_{1}, a\right) \wedge A_{v}\left(c_{12}, b_{1}\right)\right] \wedge\left[A_{w w}\left(b_{1}, a\right) \wedge A w E\left(c_{13}, b_{1}\right)\right]\right] \wedge} \\
& {\left[\left[A_{v}\left(b_{2}, a\right) \wedge A_{w w}\left(c_{21}, b_{2}\right)\right] \wedge\left[A_{v}\left(b_{2}, a\right) \wedge A_{v}\left(c_{22}, b_{2}\right)\right] \wedge\left[A_{v}\left(b_{2}, a\right) \wedge A w E\left(c_{23}, b_{2}\right)\right]\right]}
\end{aligned}
$$

Use Table 5 and we have

$$
\left[A_{w w}\left(c_{11}, a\right) \wedge A_{w w}\left(c_{12}, a\right) \wedge U_{\vee}\left(c_{13}, a\right)\right] \wedge\left[\left(P_{w w \vee} \vee P_{V}\right)\left(c_{21}, a\right) \wedge A_{V}\left(c_{222}, a\right) \wedge\left(P_{w E \vee} \vee P_{V}\right)\left(c_{23}, a\right)\right]
$$

Use Axiom 5, D15.3, and the expression becomes:
$\left.\left\{P_{w w}(c, a) \wedge P_{w w}(c, a) \wedge\left[\left(P_{w v} \vee P_{v} \vee P_{w E}\right)(c, a)\right]\right\} \wedge\left\{\left(P_{w w \vee} \vee P_{v}\right)(c, a)\right] \wedge P_{v}(c, a) \wedge\left[\left(P_{w E \vee} P_{v}\right)(c, a)\right]\right\}$ Use Axiom 6, distributivity, idempotent, and absorption rules to compute the first part of the expression

$$
\begin{align*}
& \left\{P_{w w}(c, a) \wedge P_{w W}(c, a) \wedge\left[\left(P_{w W} \vee P_{\vee \vee} \vee P_{w E}\right)(c, a)\right]\right\} \\
& =\left\{P_{w w}(c, a) \wedge\left[\left(P w w \vee P_{v} \vee P_{w e}\right)(c, a)\right]\right\} \\
& =\left[P_{w w}(c, a) \wedge P_{w w}(c, a)\right] \vee\left[P_{w w}(c, a) \wedge P_{v}(c, a)\right] \backslash\left[P_{w w}(c, a) \wedge P_{w E}(c, a)\right] \\
& =[P \operatorname{wn}(c, a)] \vee[P u m(c, a) \wedge \operatorname{Pv}(c, a)] \\
& =P w n(c, a) \text {. } \tag{4a}
\end{align*}
$$

Use absorption rule to compute the second part of the expression

$$
\begin{aligned}
& \left\{\left[\left(P_{w w} \vee P_{\vee}\right)(c, a)\right] \wedge P_{V}(c, a) \wedge\left[\left(P_{w E \vee} \vee \vee\right)(c, a)\right]\right\} \\
& =P_{\vee}(c, a) \wedge\left[\left(P_{w E}(c, a) \vee P_{\vee}(c, a)\right] .\right.
\end{aligned}
$$

Combine the computed expressions in (4a) and (4b) and apply distributivity rule:

$$
\begin{aligned}
P_{w w}(c, a) & \wedge P \vee(c, a) \wedge\left[\left(P_{w E}(c, a) \vee P_{v}(c, a)\right]\right. \\
= & {\left[P_{w w}(c, a) \wedge P_{V}(c, a) \wedge(P w E(c, a)] \vee\left[P_{w W}(c, a) \wedge P_{\vee}(c, a)\right]\right.}
\end{aligned}
$$

The outcome of the composition could be written as

$$
\operatorname{Aws}(c, a) \wedge\left[P_{w w: v: w E}(c, a) \vee P_{w w: v}(c, a)\right]
$$

which means c covers the SouthWest, South and SouthEast or SouthWest and South tiles of a. And this is confirmed by the direction relation between Iceland and Spain depicted in Figure 3.

4 Conclusion

In this paper, we have developed and formalised whole part cardinal direction relations to facilitate more expressive scene descriptions. We have also introduced a refined formula for computing the composition of such type of binary direction relations. Additionally, we have shown how to represent constraint networks in terms of weak cardinal direction relations. We demonstrated how to employ them for evaluating the consistency of composed weak direction relations.

References

1. Cicerone, S., Di Felice, P.: Cardinal Directions between Spatial Objects: The Pairwise consistency Problem. Information Sciences - Informatics and Computer Science: An International Journal 164(1-4), 165-188 (2004)
2. Clementini, E., Di Felice, P., Hernandez: Qualitative Representation and Positional Information. Artificial Intelligence 95, 315-356 (1997)
3. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus (1997)
4. Egenhofer, M.J., Sharma, J.: Assessing the Consistency of Complete and Incomplete Topological Information. Geographical Systems 1(1), 47-68 (1993)
5. Escrig, M.T., Toledo, F.: A framework based on CLP extended with CHRS for reasoning with qualitative orientation and positional information. JVLC 9, 81-101 (1998)
6. Frank, A.: Qualitative Spatial Reasoning with Cardinal Directions. JVLC (3), 343-371 (1992)
7. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Proceedings of International Conference GIS - From Space to Territory, Theories and Methods of Spa-tio-Temporal Reasoning in Geographic Space, pp. 162-178 (1992)
8. Goyal, R., Egenhofer, M.: Consistent Queries over Cardinal Directions across Different Levels of Detail. In: 11th International Workshop on Database and Expert Systems Applications, Greenwich, UK (2000)s
9. Kor, A.L., Bennett, B.: Composition for cardinal directions by decomposing horizontal and vertical constraints. In: Proceedings of AAAI 2003 Spring Symposium on Spatial and Temporal Reasoning (2003a)
10. Kor, A.L., Bennett, B.: An expressive hybrid Model for the composition of cardinal directions. In: Proceedings of IJCAI 2003 Workshop on Spatial and Temporal Reasoning, Acapulco, Mexico, August 8-15 (2003b)
11. Ligozat, G.: Reasoning about Cardinal Directions. Journal of Visual Languages and Computing 9, 23-44 (1988)
12. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8, 99-118 (1977)
13. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and spatial data structures. Technical Report KDBSLAB-TR-94-04 (1997)
14. Sharma, J., Flewelling, D.: Inferences from combined knowledge about topology and directions. In: Advances in Spatial Databases, 4th International Symposium, Portland, Maine, pp. 271-291 (1995)
15. Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Direction Relations. Artificial Intelligence 152(2), 143-171 (2004)
16. Varzi, A.C.: Parts, Wholes, and Part-Whole Relations: The prospects of Mereotopology. Data and Knowledge Engineering 20, 259-286 (1996)
