
Reasoning Mechanism for Cardinal Direction Relations 

1 Introduction 

Cardinal directions are generally used to describe relative positions of objects in 

large-scale spaces. The two classical models for reasoning about cardinal direction 

relations are the cone-shaped and projection-based models [6] where the latter forms 

the basis of our Horizontal and Vertical Constraints Model. 

Composition tables are typically used to make inferences about spatial relations 

between objects. Work has been done on the composition of cardinal direction 

relations of points [6], [7], [13] which is more suitable for describing positions of 

point-like objects in a map. Goyal et. al [8] used the direction-relation matrix to 

compose cardinal direction relations for points, lines as well as extended objects. 

Skiadopoulos et. al [15] highlighted some of the flaws in their reasoning system and 

thus developed a method for correctly computing cardinal direction relations. 

However, the set of basic cardinal relations in their model consists of 218 elements 

which is the set of all disjunctions of the nine cardinal directions. In our Horizontal 

and Vertical Constraints Model, the nine cardinal directions are partitioned into sets 

based on horizontal and vertical constraints. Composition is computed for these sets 

instead of the individual cardinal directions, thus helping collapse the typical 

disjunctive relations into smaller sets. We employed the constraint network of binary 

direction relations to evaluate the consistency of the composed set relations. Ligozat 

Ah-Lian Kor1 and Brandon Bennett2 

1 Arts Environment and Technology Faculty, Leeds Metropolitan University, Headingley 
Campus, Leeds LS6 3QS, UK 

2 School of Computing, Leeds University, Leeds LS2 9JT, UK 
A.Kor@leedsmet.ac.uk, Brandon@Comp.leeds.ac.uk 

Abstract. In the classical Projection-based Model for cardinal directions [6],  
a two-dimensional Euclidean space relative to an arbitrary single-piece region, 
a, is partitioned into the following nine tiles: North-West, NW(a); North, N(a); 
North-East, NE(a); West, W(a); Neutral Zone, O(a);East, E(a); South-West, 
SW(a); South, S(a); and South-East,SE(a). In our Horizontal and Vertical Con-
straints Model [9], [10] these cardinal directions are decomposed into sets cor-
responding to horizontal and vertical constraints. Composition is computed for 
these sets instead of the typical individual cardinal directions. In this paper, we 
define several whole and part direction relations followed by showing how to 
compose such relations using a formula introduced in our previous paper [10]. 
In order to develop a more versatile reasoning system for direction relations,  
we shall integrate mereology, topology, cardinal directions and include their 
negations as well.  

Keywords: Cardinal directions, composition table, mereology, topology,  
qualitative spatial reasoning, vertical and horizontal constraints model. 

D. Dicheva and D. Dochev (Eds.): AIMSA 2010, LNAI 6304, pp. 32–41, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 



[11] has worked on constraint networks for the individual tiles but not on their 

corresponding vertical and horizontal sets. Some work relating to hybrid cardinal 

direction models has been done. Escrig et.al [5] and Clementini et.al [2] combined 

qualitative orientation combined with distance, while Sharma et. al [14] integrated 

topological and cardinal direction relations. In order to come up with a more 

expressive model for direction relations, have extended existing spatial language for 

directions by integrating mereology, topology, and cardinal direction relations. 

Additionally, to develop a more versatile reasoning system for such relations, we have 

included their negations as well. 

2 Cardinal Directions Reasoning Model 

2.1 Projection-Based Model 

In the Projection-based Model for cardinal directions [6], a two-dimensional 

Euclidean space of an arbitrary single-piece region, a, is partitioned into nine tiles. 

They are North-West, NW(a); North, N(a); North-East, NE(a); West, W(a); Neutral 

Zone, O(a); East, E(a); South-West, SW(a); South, S(a); and South-East, SE(a). In 

this paper, we only address finite regions which are bounded. Thus every region will 

have a minimal bounding box with specific minimum and maximum x (and y) values 

(in Table 1). The boundaries of the minimal bounding box of a region a is illustrated 

in Figure 1. The definition of the nine tiles in terms of the boundaries of the minimal 

bounding box is listed below. Note that all the tiles are regarded as closed regions. 

Thus neighboring tiles share common boundaries but their interior will remain 

disjoint. 

 

Definition of tiles 
N(a) x,y Xmin(a) x Xmax(a) y Ymax(a)} 

NE(a) x,y x Xmax(a) y Ymax(a)} 

NW a) x,y x Xmin(a) y Ymax(a)} 

S(a) x,y Xmin(a) x Xmax(a) y Ymin(a)} 

SE(a) x,y x Xmax(a) y Ymin(a)} 

 

SW a x,y x Xmin(a) y Ymin(a)} 

E(a) x,y x Xmax(a) Ymin(a) y Ymax(a)} 

W(a) x,y x Xmin(a) Ymin(a) y Ymax(a)} 

O(a) x,y Xmin(a) x Xmax(a) Ymin(a) y Ymax(a)} 

 

Table  1. Definition of Tiles  

 

Definitions for the Horizontal and Vertical Constraints Model 
WeakNorth(a) is the region that covers the tiles 

NW(a), N(a), and NE(a); WeakNorth(a) NW(a) 

N(a) NE(a). 
Horizontal(a) is the region that covers the tiles W(a), 

O(a), and E(a); Horizontal(a) W(a), O(a), and E(a). 
 

WeakSouth(a) is the region that covers the tiles 

SW(a), S(a), and SE(a); WeakSouth(a) SW(a) 

S(a) SE(a). 
 

WeakWest(a) is the region that covers the tiles SW(a), 

W(a), and NW(a); WeakWest(a) SW(a) W(a) 

NW(a). 
Vertical(a) is the region that covers the tiles S(a), O(a), 

and N(a); Vertical(a) S(a) O(a) N(a). 
 
WeakEast(a) is the region that covers the tiles NE(a), 

E(a), and SE(a); WeakEast(a) NE(a) (a) SE(a). 
 

  Definitions for the Horizontal and Vertical Constraints Model  

 

Table  2. 
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2.2 Horizontal and Vertical Constraints Model 

In the Horizontal and Vertical Constraints Model [9, 10], the nine tiles are collapsed 

into six sets based on horizontal and vertical constraints as shown in Figure 1. The 

definitions of the partitioned regions are shown in Table 2 and the nine cardinal 

direction tiles can be defined in terms of horizontal and vertical sets (see Table 3).  

 

NW(a) WeakNorth(a)

WeakWest(a) 

N(a) WeakNorth(a) Vertical(a) 

NE(a) WeakNorth(a) 

                        WeakEast(a) 

 

W(a) Horizontal(a)

WeakWest(a) 

O(a) Horizontal(a) Vertical(a) 

E(a) Horizontal(a) WeakEast(a) 

 

SW(a) WeakSouth(a) 

                      WeakWest(a) 

S(a) WeakSouth(a) Vertical(a) 

SE(a) WeakSouth(a) 

                      WeakEast(a) 

 

  Definition of the tiles in terms of Horizontal and Vertical Constraints Sets 

 

 
 

Fig .1. Horizontal and Vertical Sets of Tiles Fig . 2. Spatial Relationships between

regions  

2.3 RCC Binary Relations 

In this paper, we shall use the RCC-5 [3] JPED binary topological relations for 

regions. They are: PP(x, y) which means 'x is a proper part of y'; PPi(x, y) which 

means 'y is a proper part of x'; EQ(x, y) which means 'x is identical with y'; PO(x, y) 

which means 'x partially overlaps y'; DR(x,y) which means 'x is discrete from y'. The relations 

EQ, PO, and DR are symmetric while the rest are not. PPi is also regarded as the 

inverse of PP. However, in this paper, the relationship PPi will not be considered 

because all tiles (except for tile O) are unbounded. 

2.4 Whole or Part Cardinal Direction Relations 

In our previous paper [8], we created an expressive hybrid mereological, topological 

and cardinal direction relation model. Here we shall improve the definitions of AR(b, 

a) which means that the whole destination region, b, is in the tile R(a) while PR(b, a) 

means that part of b is in tile R(a). 

Table  3.
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Cardinal direction relations defined in terms of tiles 

In this section, we shall introduce several terms to extend the existing spatial language 

for cardinal directions to facilitate a more versatile reasoning about their relations. We 

shall use RCC-5 relations to define three categories of direction relations: whole, 

part, and no part. AN(b, a) means whole of b is in the North tile of a: AN(b, a) 

PP(b, N(a)) EQ(b, N(a)) 

Here we adopt the natural language meaning for the word part which is 'some 
but not all'. PN(b, a) represents part of b is in the North tile of a. When part of b is 

in the North tile of a, this means that part of b covers the North tile and possibly one 

or more of the complementary tiles of North. 

PN(b, a) PO(b, N(a)) 

We shall use the Skiadopoulos et. al [2004] definition of  multi-tile cardinal 

direction relations. As an example, if part of b is in the North tile and the remaining 

part of b is in the NorthWest tile of a (or in other words, part of b is only in the 

North and NorthWest tiles of a) and vice versa, then its representation is  

PN: NW(b, a) PO(b, N(a)) PO(b, NW(a)) DR(b, NE(a)) DR(b, W(a)) DR(b, O(a)) 

DR(b, E(a)) DR(b, SE(a)) DR(b, S(a)) DR(b, SW(a)) 

or PN : NW(b, a) AN(b1 , a) ANW b2 , a) where b = b1 b2. 

N(b, a means no part of b is in the North tile of a. When b has no part in the 

North tile of a, this means that b could be in one or more the complementary tiles of 

North so 
N b, a DR(b, N(a)) 

If no part of b is in North and Northwest tiles (or in other words, b could only be in 

one or more of the complementary tiles of North and Northwest), then the 

representation is 
N:NW(b, a) DR(b, N(a)) DR(b, NW(a)) 

Assume U = {N, NW, NE, O, W, E, S, SW, SE}. The general definition of the 

following direction relations are in Table 4: 

D1. AR(b, a) PP(b, R(a)) EQ(b, R(a)) where 
R U 

D2. PR(b, a) PO(b, R(a)) where R U 

D3.1.P R1:..:.Rn(b,a)  PO(b,R1(a)) 

PO(b,Rn(a)) DR(b,R'(a)) where 

R1,...,Rn U, 1 n 9 and R' U - {R1,...,Rn} 

D3.1. PR1:..:.Rn(b,a) AR1 b1 ,a) ARn bn ,a) 

where b=b1 bn, where R1,...,Rn U and 
1 n 9 
 

D4. R (b, a) DR(b, R(a)) where R U 

D5. R1:..:.Rn(b, a) DR(b, R1(a))  

DR(b,Rn(a)) where R,...,Rn U and 1 

n 9. 

D6. ¬AR (b, a) R (b, a) PR (b, a) where R 

U. 

D7. ¬PR (b,a) R b,a R (b,a) where R 

U.  

D8.¬ R (b,a) R b,a PR (b,a) where R U.    

 

 Definition of direction  relations  

Negated cardinal direction relations defined in terms of tiles 

In this section, we shall define three categories of negated cardinal direction relations: 

not whole, not part, and not no part. Negated direction relations could be used when 

reasoning with incomplete knowledge. Assume B is a set of the relations, {PP, EQ, 

PO, DR}. ¬AN(b, a) means that b is not wholly in North tile of a. It is represented by:  

Table  4. 
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The complement of PP and EQ is {PO, DR} so the following holds: 

¬AN(b, a) PO(b, N(a))] DR(b, N(a)) 

Use D2 and D4 and we have part of b is not or no part of b is in North tile of a so 
¬AN(b, a) N b, a PN(b, a) 

¬PN(b, a) means b is not partly in North tile of a so ¬PN(b, a) ¬PO(b, N(a)) 

The complement of PO is {PP, EQ, DR} so the following holds:  

¬PN(b, a) PP(b, N(a)) EQ(b, N(a))] DR(b, N(a))  

Use D1, D4, we have ¬PN(b, a) AN(b, a) N(b, a

¬ N(b, a) means not no part of b is in the North tile of a. Thus  
¬ N(b, a) ¬DR(b, N(a)) or ¬ N(b, a) PP(b, N(a)) EQ(b, N(a))] PO(b, N(a))  

Use D1, D2 and D4, we have the following: ¬ N(b, a) AN(b,a) PN(b, a  
 

Assume U = {N, NW, NE, O, W, E, S, SW, SE}. The general definition of the 

negated direction relations are in Table 4. Here we shall give an example to show 

how some of the aforementioned whole-part relations could be employed to describe 

the spatial relationships between regions. In Figure 2, we shall take the village as the 

referent region while the rest will be destination regions. The following is a list of 

possible direction relations between the village and the other regions in the scene: 

 AN(forest,village): The whole forest is in the North tile of the village and 

ASE(island,village): the whole island is in the SouthEast tile of the village. 

 PNW:W:SW:S:SE:E(lake,village): Part of the lake is in the NorthWest, West, SouthWest, 

South, SouthEast and East tiles of the village. 

 O:N:NE(lake,village): This is another way to represent the direction relationship 

between the lake and village. t means no part of the lake is in the Neutral, North 

and NorthEast tiles of the village. 

 PO:N:NE:NW:W:SW:S:SE:E(grassland,village): Part of the grassland is in all the tiles of the 

village. 

Next we shall show how negated direction relations could be used to represent 

incomplete knowledge about the direction relations between two regions. Assume that 

we have a situation where the hills are not wholly in the North tile of the village. We 

can interpret such incomplete knowledge using D6, part or no part direction relations: 

PN(hills, village) N hills,village). In other words, either there is no hilly region is 

in the North tile of the village or part of the hilly region covers the North tile of the 

village. If we are given this piece of information 'it is not true that no part of the lake 

lies in the North tile of the village', we shall use D8 to interpret it. Thus we have the 

following possible relations: AN lake,village) PN(lake,village). This means that the 

whole or only part of the lake is in the North tile of the village. 

2.5 Cardinal Direction Relations Defined in Terms of Horizontal or Vertical  

Constraints 

The definitions of cardinal direction relations expressed in terms of horizontal and 

vertical constraints are similar to those shown in the previous section (D1 to D8). The 

only difference is that the universal set, U is {WeakNorth (WN), Horizontal (H), 

WeakSouth (WS), WeakEast (WE), Vertical (V), WeakWest (WW)}. 

¬AN (b, a) ¬[PP(b, N(a)) EQ(b, N(a))] 

Use De Morgan's Law and we have ¬AN(b, a) ¬PP(b, N(a)) ¬EQ(b, N(a)) 
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Whole and part cardinal direction relations defined in terms of horizontal and 

vertical constraints 

In this section, we use examples to show how whole and part cardinal direction 

relations could be represented in terms of horizontal and vertical constraints. We shall 

exclude the inverse and negated relations for reasons that will be given in the later 

part of this paper. We shall use abbreviations {WN, H, WS} for {WeakNorth, 
Horizontal, WeakSouth} and {WE, V, WW} for {WeakEast, Vertical, 
WeakWest} respectively. 

D9. AN(b, a) AWN(b, a) AV(b, a) 

D10. PN(b, a) PWN(b, a) PV(b, a) 

D11. PN : NW(b, a) AN b1 ,a) A NW b2 ,a) AWN(b1, a) AV(b1, a)] AWN(b2, a) AWW(b2, a)] where  

b = b1 b2 

D12. N(b, a) WN(b, a) V(b, a) 

D13. N : NW(b,a) N(b,a) N(b,a) WN(b,a) V(b,a)] WN(b, a) WW(b, a)] 
 

Next we shall use the part relation as a primitive for the definitions of the whole 
and no part relations. Once again assume U = {N, NW, NE, O, W, E, S, SW, SE}. 
D14.1. AR(b, a) PR(b, a) [¬PR1(b, a) ¬PR2(b, a) ¬PRm(b, a)] where R U, Rm U – {R} 

(which is the complement of R), and 1 m 8 As an example

AN(b,a) PN(b,a) [¬PNE(b,a) ¬PNW(b,a) ¬Pw(b,a) ¬PO(b,a) ¬PE(b,a) ¬PSW(b,a) ¬PS(b,a) 

¬PSE(b,a)] 

D14.2. AHR(b, a) PHR(b, a) [¬PHR1(b, a) ¬PHRn(b, a)] where HR {WN, H, WS}, HRm is the 

complement of HR, and 1 n 3 As an example AWN(b, a) PWN(b, a) [¬PH(b, a) ¬PWS(b, a)] 

D14.3. AVR(b, a) PVR(b, a) [¬PVR1(b, a) ¬PVRn(b, a)] where VR {WW, V, WE}, VRm is the 

complement of VR), and 1 n 3 As an example AWW(b, a) PWW(b, a) [¬PV(b, a) ¬PWE(b, a)] 

D15.1. R(b, a) ¬PR(b, a) [PR1(b, a) PR2(b, a) PRm(b, a)] where R U, Rm U – {R}, and 

1 m 8 As an example

N(b,a) ¬PN(b,a) [PNE(b, a) PNW(b,a) Pw(b,a) PO(b,a) PE(b,a) PSW(b,a) PS(b,a) PSE(b,a)] 

D15.2. HR(b, a) ¬PHR(b, a) [PHR1(b, a) PHR2(b, a)] where HR {WN,H, WS}, while HR1 and 

HR2 constitute its complement. As an example, WN(b, a) ¬PWN(b, a) [PH(b, a) PWS(b, a)]

D15.3. VR(b, a) ¬PVR(b, a) [PVR1(b, a) PVR2(b, a)] where VR {WW,V, WE}, while VR1 and 

VR2 constitute its complement. As an example, WW(b, a) ¬PWW(b, a) [PV(b, a) PWE(b, a)]

3 Composition Table for Cardinal Directions 

Ligozat (1988) obtained the outcome of the composition of all the nine tiles in a 

Projection Based Model for point objects by composing the constraints {<, =, >}. 

However, our composition tables (Tables 5 and 6) are computed using the vertical and 

horizontal constraints of the sets of direction relations. We shall abstract several 

composition rules in Table 5. Similar rules apply to Table 6. Assume U is { AWE, AV, 

AWW }. WeakEast(WE) is considered the converse of WeakWest (WW) and vice 

versa. 

Rule 1 (Identity Rule): R R = R where R U. 
Rule 2 (Converse Rule): S S' = U, AV S PV PS where S {AWE, AWW } and S' is 

its converse. 

Here we shall introduce several axioms that are necessary for the direction 

reasoning mechanism. In the next section we shall show how to apply these axioms 

and some logic rules for making inferences about direction relations. 
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Axiom 1. AR b1 ,a) A R b2 ,a) A R bk ,a) A R b,a) where R U, 1 k 9 and 

 b1 b2 bk = b 
Axiom 2. AR1 b1 ,a) A R2 b2 ,a) A Rn bk ,a) PR1:R2:...:Rn b,a) where Rn U,  

 1 k 9 and b1 b2 bk = b 

Axiom 3. PR ck ,a) PP ck ,c) P R c,a) where R U, and 1 k 9 

Axiom 4. [PR1 c1 ,a) PP c1 ,c)] [PR2 c2 ,a) PP c2 ,c)] 

  [PRk ck ,a) PP ck ,c)] PR1:R2:...:Rk c,a) where 1 k 9, and Rk U. 

Axiom 5. AR ck ,a) PP ck ,c) P R c,a) where R U, and 1 k 9 

Axiom 6. ¬{[PWW c1 ,a) PP c1 ,c)] [PWE c2 ,a) PP c2 ,c)]} where c1 c2 = c 
 (because c is a single connected piece) 

Axiom 7. ¬{[PWN c1 ,a) PP c1 ,c)] [PWS c2 ,a) PP c2 ,c)]} where c1 c2 = c 
 (because c is a single connected piece) 

3.1 Formula for Computation of Composition 

In our previous paper [10], we introduced a formula (obtained through case analyses) 

for computing the composition of cardinal direction relations. Here we shall modify 

the notations used for easy comprehension. Skiadopoulos et. al [15] introduced 

additional concepts such as rectangular versus nonrectangular direction relations, 

bounding rectangle, westernmost (etc...) to facilitate the composition of relations. 

They have separate formulae for the composition of rectangular and non-rectangular 

regions. However, in this paper we shall apply one formula for the composition of all 

types of direction relations. The basis of the formula is to first consider the direction 

relation between a and each individual part of b followed by the direction relation 

between each individual part of b and c. Assume that the region b covers one or more 

tiles of region a while region c covers one or more tiles of b. The direction relation 

between a and b is R(b,a) while the direction relation between b and c is S(c,b). The 

composition of direction relations could be written as follows:  

R(b,a) S(c,b) 

Firstly, establish the direction relation between a and each individual part of b. 

R(b,a) S(c,b) [R1(b1,a) R2(b2,a)... Rk(bk,a)] [S(c,b)]……….where 1 k 9………………….....(1) 

Consider the direction relation of each individual part of b and c. Equation (1) 

becomes:[R1(b1,a) S1(c,b1)] [R2(b2,a) S2(c,b2)] [Rk(bk,a) Sk(c,bk)]…where 1 k 9 …(2) 

3.2 Composition of Cardinal Direction Relations 

Previously we have grouped the direction relations into three categories namely: 

whole, part, and no part. If we include their respective inverses and negations, there 

will be a total of 9 types of direction relations. However, we do not intend to delve 

into the composition of inverse and negated relations due to the high level of 

uncertainty involved. Typically, the inferences drawn would consist of the universal 

set of tiles, which is not beneficial. In this paper, we shall demonstrate several types 

of composition. The type of composition shown in this part of the paper involves the 

composition of vertical and horizontal sets which is different from Skiadopoulos et. 

al's work [15] involving the composition of individual tiles. Use Tables 5 and 6 to 

obtain the outcome of each composition. The meaning of the two following notations 

UV(c,a) and UH(c,a) are in Tables 5 and 6. 

…
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  WeakEast Vertical WeakWest 

  AWE(c,b) AV(c,b) AWW(c,b) 

WeakEast AWE(b,a) AWE(c,a) AWE(c,a) UV(c,a) 

Vertical AV(b,a) PWE PV(c,a  AV(c,a) PWW PV(c,a  

WeakWest AWW(b,a) UV(c,a) AWW(c,a) AWW(c,a) 
Note: UV (c,a)=[PWE(c,a) PV(c,a) PWW(c,a)].Therefore the possible set of relations is  

{[AWE(c,a), AV(c,a), AWW(c,a), PWE : V : WW(c,a), PWE :V(c,a), PWW :V(c,a)}. 

  Composition of Vertical Set Relations 

 

 
 

 WeakNorth Horizontal WeakSouth 

  AWN(c,b) AH(c,b) AWS(c,b) 

WeakNorth AWN(b,a) AWN(c,a) AWN(c,a) UH(c,a) 

Horizontal AH(b,a) PWN PH(c,a  AH(c,a) PWS PH(c,a  

WeakSouth AWS(b,a) UH(c,a) AWS(c,a) AWS(c,a) 
Note:UH (c,a)=[PWN(c,a) PH(c,a) PWS(c,a)]. Therefore the possible set of relations is 

{AWN(c,a), AH(c,a), AWS(c,a), PWN : H : WS(c,a), PWN :H(c,a) , PWS : H(c,a)]}. 

   Composition of Horizontal Set Relations  

 

Example 1

Fig.3. Spatial relationships among regions  
in Europe

 

In Figure 3, part of Ireland (b) is only 

in the South and SouthWest tiles of 

Iceland (a) while the part of Spain (c) 

is in the SouthWest, South and 

SouthEast tiles of Ireland. We have to 

make an inference about the direction 

relation between Iceland and Spain. We 

shall represent the information as:  

PSW:S(Ireland,Iceland) PSW:S:SE(Spain,Ireland) 
 

Use the abbreviations a, b, c to 

represent Iceland, Ireland, and Spain 

respectively. The above expression is 

written as:  

PSW:S(b, a) PSW:S:SE(c, b)…………….(3a)  

Firstly, establish the direction relation between a and each individual part of b. Use 

D3 and expression in (3a) becomes  

[ASW(b1,a) AS(b2,a)] [PSW:S:SE(c, b)]………….(3b) 

Use the extended boundaries of part region b1 to partition c. As depicted in Figure 3, c 
is divided into 3 subregions (c11, c12, and c13). Establish direction relations between 

these regions and b1. We have ASW(c11,b1),AS(c12,b1), and ASE(c13,b1).Repeat the 

same procedure for b2 and we have the following direction relations between b2 and 

its corresponding subregions:  

ASW(c21,b2), AS(c22,b2) and ASE(c23,b2) 

Table  5. 

Table   6.
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We shall compute the vertical and horizontal constraints separately and apply 

formulae similar to D9. 
 

Composition of Horizontal Constraints 

[[AWS(b1,a) AWS(c11,b1)] [AWS(b1,a) AWS(c12,b1)] [AWS(b1,a) AWS(c13,b1)]] 

[[AWS(b2,a) AWS(c21,b2)] [AWS(b2,a) AWS(c22,b2)] [AWS(b2,a) AWS(c23,b2)]] 

Use Table 6 and we have 

[AWS(c11 ,a) AWS(c12 ,a) AWS(c13 ,a)] [AWS(c21 ,a) AWS(c22,,a) AWS(c23 ,a] 

However, as shown earlier, c11 c12 c13 = c and c21 c22 c23 = c. Use Axiom 1 

and the modus ponens inference rule (P Q; P, Q) and the above expression 

becomes AWS(c,a) AWS(c,a) which equals AWS(c,a). 
 
Composition of Vertical Constraints 

[[AWW(b1,a) AWW(c11,b1)] [AWW(b1,a) AV(c12 ,b1)] [AWW(b1,a) AWE(c13 ,b1)]] 

[[AV(b2 ,a) AWW(c21 ,b2)] [AV(b2 ,a) AV(c22 ,b2)] [AV(b2 ,a) AWE(c23 ,b2)]] 

Use Table 5 and we have 

[AWW(c11 ,a) AWW(c12 ,a) UV(c13 ,a)] [ PWW PV )(c21 ,a) AV(c22,,a) PWE PV ) (c23 ,a)] 

Use Axiom 5, D15.3, and the expression becomes: 

{PWW(c, a) PWW(c , a) PWW PV PWE )(c, a)]} { PWW PV )(c, a)] PV(c , a) PWE PV )(c, a)]}
 

Use Axiom 6, distributivity, idempotent, and absorption rules to compute the first 

part of the expression 

{PWW(c, a) PWW(c , a) PWW PV PWE )(c, a)]} 

={PWW(c , a) PWW PV PWE )(c, a)]} 

=[PWW(c , a) PWW (c, a)] [PWW(c , a) PV (c, a)] [PWW(c , a) PWE(c, a)] 

=[PWW(c , a)] [PWW(c , a) PV (c, a)] 
=PWW(c , a)……………………………………...(4a) 

Use absorption rule to compute the second part of the expression 

{[ PWW PV )(c, a)] PV(c , a) PWE PV )(c, a)]} 

= PV(c , a) PWE (c, a) PV (c, a)] (4b) 

Combine the computed expressions in (4a) and (4b) and apply distributivity rule: 

PWW(c , a) PV(c , a) PWE (c, a) PV (c, a)] 

=[PWW(c , a) PV(c , a) PWE (c, a)] PWW(c , a) PV(c , a)

The outcome of the composition could be written as  

AWS(c,a) PWW:V:WE (c, a) PWW:V (c, a)] 

which means c covers the SouthWest, South and SouthEast or SouthWest and South
 

tiles of a. And this is confirmed by the direction relation between Iceland and Spain 

depicted in Figure 3. 

Expression (3b) becomes: 

[ASW(b1,a) AS(b2,a)] {[ASW(c11,b1) AS(c12,b1) ASE(c13,b1)] ASW(c21,b2) AS(c22,b2) ASE(c23,b2)]}...(3c)
 

Apply formula (2) into expression (3c) and we have 

{[ASW(b1,a) ASW(c11,b1)] [ASW(b1,a) AS(c12,b1)] [ASW(b1,a) ASE(c13,b1)]}

{[AS(b2,a) ASW(c21,b2)] [AS(b2,a) AS(c22,b2)] [AS(b2,a) ASE(c23,b2)]}…………(3d) 
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4 Conclusion 

In this paper, we have developed and formalised whole part cardinal direction 

relations to facilitate more expressive scene descriptions. We have also introduced a 

refined formula for computing the composition of such type of binary direction 

relations. Additionally, we have shown how to represent constraint networks in terms 

of weak cardinal direction relations. We demonstrated how to employ them for 

evaluating the consistency of composed weak direction relations. 
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