4,409 research outputs found

    Parallel quantized charge pumping

    Full text link
    Two quantized charge pumps are operated in parallel. The total current generated is shown to be far more accurate than the current produced with just one pump operating at a higher frequency. With the application of a perpendicular magnetic field the accuracy of quantization is shown to be << 20 ppm for a current of 108.9108.9 pA. The scheme for parallel pumping presented in this work has applications in quantum information processing, the generation of single photons in pairs and bunches, neural networking and the development of a quantum standard for electrical current. All these applications will benefit greatly from the increase in output current without the characteristic decrease in accuracy as a result of high-frequency operation

    On the nature of the AGILE galactic transient sources

    Get PDF
    The Italian gamma-ray satellite AGILE has recently reported the detection of some variable high-energy sources likely of galactic origin. These sources do not have any obvious counterpart at lower energies. We propose that these sources are produced in proton-dominated jets of galactic microquasars. We develop a model for microquasar jets that takes into account both primary leptons and protons and all relevant radiative processes, including secondary particle emission and gamma-ray attenuation due to pair creation in the jet. We obtain spectral energy distributions that correspond to what is observed by AGILE, with most of the power concentrated between 100 MeV and 10 GeV and reaching luminosities of 1034−3510^{34-35} erg s−1^{-1}. We make detailed spectral predictions that can be tested by the Fermi gamma-ray telescope in the immediate future. We conclude that hadronic jets in galactic accreting sources can be responsible for the variable unidentified gamma-ray sources detected by AGILE.Comment: 4 pages, 2 figures. Accepted for publication in Astronomy & Astrophysics (Letters

    Topologically massive magnetic monopoles

    Get PDF
    We show that in the Maxwell-Chern-Simons theory of topologically massive electrodynamics the Dirac string of a monopole becomes a cone in anti-de Sitter space with the opening angle of the cone determined by the topological mass which in turn is related to the square root of the cosmological constant. This proves to be an example of a physical system, {\it a priory} completely unrelated to gravity, which nevertheless requires curved spacetime for its very existence. We extend this result to topologically massive gravity coupled to topologically massive electrodynamics in the framework of the theory of Deser, Jackiw and Templeton. These are homogeneous spaces with conical deficit. Pure Einstein gravity coupled to Maxwell-Chern-Simons field does not admit such a monopole solution

    A simple analytical model for dark matter halo structure and adiabatic contraction

    Full text link
    A simple analytical model for describing inner parts of dark matter halo is considered. It is assumed that dark matter density is power-law. The model deals with dark matter distribution function in phase space of adiabatic invariants (radial action and angular momentum). Two variants are considered for the angular part of the distribution function: narrow and broad distribution. The model allows to describe explicitly the process of adiabatic contraction of halo due to change of gravitational potential caused by condensation of baryonic matter in the centre. The modification of dark matter density in the centre is calculated, and is it shown that the standard algorithm of adiabatic contraction calculation overestimates the compressed halo density, especially in the case of strong radial anisotropy.Comment: 5 pages, 3 figures. v3 - major improvements, another halo model introduced, discussion extende

    Automation concepts and gripping solutions for bonding with reactive multilayer systems

    Get PDF
    Reactive multilayer systems (RMS) represent an innovative heat source for the establishment of solder joints. They offer fast bonding processes that introduce very little thermal input and internal stress on the bonded parts. The current application process of RMS is predominantly manual labor. There are a couple of challenges to be overcome to automate this process, a requirement for its introduction into industrial production. In this paper we evaluate the requirements for an automated joining process with RMS and devise a concept of a modular assembly system for different product structures. Furthermore we show our results in gently and reliably gripping and handling of RMS.Federal Ministry of Economic and Technology (BMWi)InnoJoin GmbH & Co. KG, Breme

    A universal angular momentum profile for galactic halos

    Get PDF
    [Abridged] We study the angular-momentum profiles of a statistical sample of halos drawn from a high-resolution N-body simulation of the LCDM cosmology. We find that the cumulative mass distribution of specific angular momentum, j, in a halo of mass Mv is well fit by a universal function, M(<j) = Mv \mu j/(j_0+j). This profile is defined by one shape parameter (\mu or j_0) in addition to the global spin parameter \lambda. It follows a power-law over most of the mass, and flattens at large j, with the flattening more pronounced for small values of \mu. Compared to a uniform sphere in solid-body rotation, most halos have a higher fraction of their mass in the low- and high-j tails of the distribution. The spatial distribution of angular momentum in halos tends to be cylindrical and is well-aligned within each halo for ~80% of the halos. We investigate two ideas for the origin of this profile. The first is based on a revised version of linear tidal-torque theory combined with extended Press-Schechter mass accretion, and the second focuses on j transport in minor mergers. Finally, we briefly explore implications of the M(<j) profile on the formation of galactic disks assuming that j is conserved during an adiabatic baryonic infall. The implied gas density profile deviates from an exponential disk, with a higher density at small radii and a tail extending to large radii. The steep central density profiles may imply disk scale lengths that are smaller than observed. This is reminiscent of the "angular-momentum problem" seen in hydrodynamic simulations, even though we have assumed perfect j conservation. A possible solution is to associate the central excesses with bulge components and the outer regions with extended gaseous disks.Comment: 19 pages LaTeX, uses emulateapj5, 22 embedded figures, 1 separate figure, Submitted to ApJ, version with higher quality figures available at http://www.astronomy.ohio-state.edu/~james/PAPER/parts.htm

    Single-parameter non-adiabatic quantized charge pumping

    Full text link
    Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.Comment: 4 pages, 4 figure
    • …
    corecore