730 research outputs found

    The transmission of nosocomial pathogens in an intensive care unit: a space–time clustering and structural equation modelling approach

    Get PDF
    We investigated the incidence of cases of nosocomial pathogens and risk factors in an intensive treatment unit ward to determine if the number of cases is dependent on location of patients and the colonization/infection history of the ward. A clustering approach method was developed to investigate the patterns of spread of cases through time for five microorganisms [methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter spp., Klebsiella spp., Candida spp., and Pseudomonas aeruginosa] using hospital microbiological monitoring data and ward records of patient-bed use. Cases of colonization/infection by MRSA, Candida and Pseudomonas were clustered in beds and through time while cases of Klebsiella and Acinetobacter were not. We used structural equation modelling to analyse interacting risk factors and the potential pathways of transmission in the ward. Prior nurse contact with colonized/infected patients, mediated by the number of patient-bed movements, were important predictors for all cases, except for those of Pseudomonas. General health and invasive surgery were significant predictors of cases of Candida and Klebsiella. We suggest that isolation and bed movement as a strategy to manage MRSA infections is likely to impact upon the incidence of cases of other opportunist pathogen

    Polarization switching at the nanoscale in ferroelectric copolymer thin films

    Get PDF
    The polarization switching kinetics were measured at the nanoscale in continuous thin films of a ferroelectric copolymer of vinylidene fluoride and trifluoroethylene. The dependence of the switching rate on voltage for a 54-nm thick film exhibits extrinsic nucleation and domain-growth type kinetics with no true threshold coercive field, and is qualitatively different from the behavior of an 18-nm thick film, which exhibits intrinsic switching kinetics, and a true threshold field. The results are consistent with studies of thin film capacitors of much larger area and with a recent refinement of the theory of the critical size for intrinsic switching

    Optical second harmonic generation probe of two-dimensional ferroelectricity

    Get PDF
    Optical second harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of copolymer vinylidene fluoride with trifluorethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of LB films and a thickness independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.Comment: 9 pages, 2 figures, Optics Letters, in prin

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.

    Ferroelectric Instability under Screened Coulomb Interactions

    Get PDF
    We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO3, we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices.Comment: 4 pages, 5 figures with 5 pages of supplementary materia

    Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Get PDF
    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO3 is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.Comment: 14 pages, 11 figures, submitted to J. Appl. Phy

    Domain wall conduction in multiaxial ferroelectrics

    Full text link
    The conductance of domain wall structures consisting of either stripes or cylindrical domains in multi-axial ferroelectric-semiconductors is analyzed. The effects of the domain size, wall tilt and curvature, on charge accumulation, are analyzed using the Landau-Ginsburg Devonshire (LGD) theory for polarization combined with Poisson equation for charge distributions. Both the classical ferroelectric parameters including expansion coefficients in 2-4-6 Landau potential and gradient terms, as well as flexoelectric coupling, inhomogeneous elastic strains and electrostriction are included in the present analysis. Spatial distributions of the ionized donors, free electrons and holes were found self-consistently using the effective mass approximation for the respective densities of states. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and thicker cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radius less then 5-10 correlation length appeared conducting across entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.Comment: 39 pages, 11 figures, 3 tables, 4 appendice
    • …
    corecore