101 research outputs found

    Single shot phase contrast imaging using laser-produced Betatron x-ray beams

    Full text link
    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.Comment: 3 pages, 3 figure

    Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation

    Get PDF
    Betatron X-ray radiation in laser-plasma accelerators is produced when electrons are accelerated and wiggled in the laser-wakefield cavity. This femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt range has been observed at different interaction regime using high power laser from 10 to 100 TW. However, none of the spectral measurement performed were at sufficient resolution, bandwidth and signal to noise ratio to precisely determine the shape of spectra with a single laser shot in order to avoid shot to shot fluctuations. In this letter, the Betatron radiation produced using a 80 TW laser is characterized by using a single photon counting method. We measure in single shot spectra from 8 to 21 keV with a resolution better than 350 eV. The results obtained are in excellent agreement with theoretical predictions and demonstrate the synchrotron type nature of this radiation mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our experimental conditions. In addition, the features of the source at this energy range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure

    Softening of the insulating phase near Tc for the photo-induced insulator-to-metal phase transition in vanadium dioxide

    Full text link
    We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.Comment: accepted for publication in Physical Review Letter

    Effect of experimental laser imperfections on laser wakefield acceleration and betatron source

    Get PDF
    International audienceLaser pulses in current ultra-short TW systems are far from being ideal Gaussian beams. The influence of the presence of non-Gaussian features of the laser pulse is investigated here from experiments and 3D Particle-in-Cell simulations. Both the experimental intensity distribution and wavefront are used as input in the simulations. It is shown that a quantitative agreement between experimental data and simulations requires to use realistic pulse features. Moreover, some trends found in the experiments, such as the growing of the X-ray signal with the plasma length, can only be retrieved in simulations with realistic pulses. The performances on the electron acceleration and the synchrotron X-ray emission are strongly degraded by these non-Gaussian features, even keeping constant the total laser energy. A drop on the X-ray photon number by one order of magnitude was found. This clearly put forward the limitation of using a Gaussian beam in the simulations

    Quasi-monoenergetic electron beams production in a sharp density transition

    No full text
    International audienceUsing a laser plasma accelerator, experiments with a 80 TW and 30 fs laser pulse demonstrated quasi-monoenergetic electron spectra with maximum energy over 0.4 GeV. This is achieved using a supersonic He gas jet and a sharp density ramp generated by a high intensity laser crossing pre-pulse focused 3 ns before the main laser pulse. By adjusting this crossing pre-pulse position inside the gas jet, among the laser shots with electron injection more than 40% can produce quasi-monoenergetic spectra. This could become a relatively straight forward technique to control laser wakefield electron beams parameters

    Study of hard x-ray emission from intense femtosecond TiTi:sapphire laser–solid target interactions

    Full text link
    Interaction of intense TiTi:sapphire laser with solid targets has been studied experimentally by measuring hard x-ray and hot electron generation. Hard x-ray (8–100 keV)(8–100keV) emission spectrum and KαKα x-ray conversion efficiency (ηK)(ηK) from plasma have been studied as a function of laser intensity (1017–1019  W/cm2)(1017–1019W∕cm2), pulse duration (70–400)fs(70–400)fs, and laser pulse fluence. For intensity I>1×1017 W/cm2I>1×1017W∕cm2, the Ag ηKAgηK increases to reach a maximum value of 2×10−52×10−5 at an intensity I = 4×1018 W/cm2I=4×1018W∕cm2. Hot electron temperature (KTh)(KTh) and ηKηK scaling laws have been studied as a function of the laser parameters. A stronger dependence of KThKTh and ηKηK as a function of the laser fluence than on pulse duration or laser intensity has been observed. The contribution of another nonlinear mechanism, besides resonance absorption, to hard x-ray enhancement has been demonstrated via hot electron angular distribution and particle-in-cell simulations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71221/2/PHPAEN-11-9-4439-1.pd

    Control and optimization of a staged laser-wakefield accelerator

    Get PDF
    We report results of an experimental study of laser-wakefield acceleration of electrons, using a staged device based on a double-jet gas target that enables independent injection and acceleration stages. This novel scheme is shown to produce stable, quasi-monoenergetic, and tunable electron beams. We show that optimal accelerator performance is achieved by systematic variation of five critical parameters. For the injection stage, we show that the amount of trapped charge is controlled by the gas density, composition, and laser power. For the acceleration stage, the gas density and the length of the jet are found to determine the final electron energy. This independent control over both the injection and acceleration processes enabled independent control over the charge and energy of the accelerated electron beam while preserving the quasi-monoenergetic character of the beam. We show that the charge and energy can be varied in the ranges of 2–45 pC, and 50–450 MeV, respectively. This robust and versatile electron accelerator will find application in the generation of high-brightness and controllable x-rays, and as the injector stage for more conventional devices

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot
    • …
    corecore