971 research outputs found

    Measuring Gaussian rigidity using curved substrates

    Get PDF
    The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here we consider such membranes supported by curved supports that thereby control the membrane curvatures. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, whilst remaining in the perturbative regime of our analysis.Comment: 5 pages, 3 figures. v2: version accepted for publicatio

    Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations

    Get PDF
    We prove a multiplicity result of periodic solutions for a system of second order differential equations having asymmetric nonlinearities. The proof is based on a recent generalization of the Poincar\ue9\u2013Birkhoff fixed point theorem provided by Fonda and Ure\uf1a

    Exponential behavior of a quantum system in a macroscopic medium

    Get PDF
    An exponential behavior at all times is derived for a solvable dynamical model in the weak-coupling, macroscopic limit. Some implications for the quantum measurement problem are discussed, in particular in connection with dissipation.Comment: 8 pages, report BA-TH/94-17

    Quantum Zeno effect in a probed downconversion process

    Full text link
    The distorsion of a spontaneous downconvertion process caused by an auxiliary mode coupled to the idler wave is analyzed. In general, a strong coupling with the auxiliary mode tends to hinder the downconversion in the nonlinear medium. On the other hand, provided that the evolution is disturbed by the presence of a phase mismatch, the coupling may increase the speed of downconversion. These effects are interpreted as being manifestations of quantum Zeno or anti-Zeno effects, respectively, and they are understood by using the dressed modes picture of the device. The possibility of using the coupling as a nontrivial phase--matching technique is pointed out.Comment: 11 pages, 4 figure

    Robust Neural Network RISE Observer Based Fault Diagnostics And Prediction

    Get PDF
    A novel fault diagnostics and prediction scheme in continuous time is introduced for a class of nonlinear systems. The proposed method uses a novel neural network (NN) based robust integral sign of the error (RISE) observer, or estimator, allowing for semi-global asymptotic stability in the presence of NN approximation errors, disturbances and unmodeled dynamics. This is in comparison to typical results presented in the literature that show only boundedness in the presence of uncertainties. The output of the observer/estimator is compared with that of the nonlinear system and a residual is used for declaring the presence of a fault when the residual exceeds a user defined threshold. The NN weights are tuned online with no offline tuning phase. The output of the RISE observer is utilized for diagnostics. Additionally, a method for time-to-failure (TTF) prediction, a first step in prognostics, is developed by projecting the developed parameter-update law under the assumption that the nonlinear system satisfies a linear-in-the-parameters (LIP) assumption. The TTF method uses known critical values of a system to predict when an estimated parameter will reach a known failure threshold. The performance of the NN/RISE observer system is evaluated on a nonlinear system and a simply supported beam finite element analysis (FEA) simulation based on laboratory experiments. Results show that the proposed method provides as much as 25% increased accuracy while the TTF scheme renders a more accurate prediction. © 2010 IEEE

    No classical limit of quantum decay for broad states

    Full text link
    Though the classical treatment of spontaneous decay leads to an exponential decay law, it is well known that this is an approximation of the quantum mechanical result which is a non-exponential at very small and large times for narrow states. The non exponential nature at large times is however hard to establish from experiments. A method to recover the time evolution of unstable states from a parametrization of the amplitude fitted to data is presented. We apply the method to a realistic example of a very broad state, the sigma meson and reveal that an exponential decay is not a valid approximation at any time for this state. This example derived from experiment, shows the unique nature of broad resonances

    Comparison of analytical functions used to describe topside electron density profiles with satellite data

    Get PDF
    Electron density models of the ionosphere use different analytical formulations for the electron density vertical profile in the topside. The present paper compares some single-layer topside analytical descriptions (Chapman, Epstein, modified Epstein used in the NeQuick model) with experimental topside profiles obtained from measurements of IK19 and ISIS2 satellites. The limits of height range and shape for each formulation are described and analyzed and suggestions for the use of multiple layers solution to reproduce experimental results are given

    Suppression of Zeno effect for distant detectors

    Full text link
    We describe the influence of continuous measurement in a decaying system and the role of the distance from the detector to the initial location of the system. The detector is modeled first by a step absorbing potential. For a close and strong detector, the decay rate of the system is reduced; weaker detectors do not modify the exponential decay rate but suppress the long-time deviations above a coupling threshold. Nevertheless, these perturbing effects of measurement disappear by increasing the distance between the initial state and the detector, as well as by improving the efficiency of the detector.Comment: 4 pages, 4 figure
    corecore