21 research outputs found

    臨床応用の可能なマウス型モノクローナル抗体の作製 - 早期癌診断へのモノクローナル抗体2H6の応用 -

    Get PDF
    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging

    Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics

    Get PDF
    Abstract Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck, and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. Taking advantage of the excellent sensitivity and specificity of ultrasound for microbubble detection, molecular imaging can be realized by binding antibodies, peptides, and other targeting moieties to microbubble surfaces. Molecular microbubbles directed against various targets such as vascular endothelial growth factor receptor-2, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, selectins, and integrins were developed and were shown in preclinical studies to be able to selectively bind to tumor blood vessels and atherosclerotic plaques. Currently, the first microbubble formulations targeted to angiogenic vessels in prostate cancers are being evaluated clinically. However, microbubbles can be used for more than diagnosis: disintegrating microbubbles emit acoustic forces that are strong enough to induce thrombolysis, and they can also be used for facilitating drug and gene delivery across biologic barriers. This review on the use of microbubbles for ultrasound-based molecular imaging, therapy, and theranostics addresses innovative concepts and identifies areas in which clinical translation is foreseeable in the near future

    Noninvasive molecular ultrasound monitoring of vessel healing after intravascular surgical procedures in a preclinical setup

    Get PDF
    Objective— Cardiovascular interventions induce damage to the vessel wall making antithrombotic therapy inevitable until complete endothelial recovery. Without a method to accurately determine the endothelial status, many patients undergo prolonged anticoagulation therapy, denying them any invasive medical procedures, such as surgical operations and dental interventions. Therefore, we aim to introduce molecular ultrasound imaging of the vascular cell adhesion molecule (VCAM)-1 using targeted poly- n -butylcyanoacrylate microbubbles (MB VCAM-1 ) as an easy accessible method to monitor accurately the reendothelialization of vessels. Approach and Results— ApoE −/− mice were fed with an atherogenic diet for 1 and 12 weeks and subsequently, endothelial denudation was performed in the carotid arteries using a guidewire. Molecular ultrasound imaging was performed at different time points after denudation (1, 3, 7, and 14 days). An increased MB VCAM-1 binding after 1 day, a peak after 3 days, and a decrease after 7 days was found. After 12 weeks of diet, MB VCAM-1 binding also peaked after 3 days but remained high until 7 days, indicating a delay in endothelial recovery. Two-photon laser scanning microscopy imaging of double fluorescence staining confirmed the exposure of VCAM-1 on the superficial layer after arterial injury only during the healing phase. After complete reendothelialization, VCAM-1 expression persisted in the subendothelial layer but was not reachable for the MB VCAM-1 anymore. Conclusion— Molecular ultrasound imaging with MB VCAM-1 is promising to assess vascular damage and to monitor endothelial recovery after arterial interventions. Thus, it may become an important diagnostic tool supporting the development of adequate therapeutic strategies to personalize anticoagulant and anti-inflammatory therapy after cardiovascular intervention. </jats:sec

    Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging

    Get PDF
    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~ 10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~ 0.8 and p-values of < 0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments

    Fluorescently labeled microbubbles for facilitating translational molecular ultrasound studies

    Get PDF
    Abstract Microbubbles (MB) are routinely used as contrast agents for functional and molecular ultrasound (US) imaging. For molecular US imaging, MB are functionalized with antibodies or peptides, in order to visualize receptor expression by angiogenic or inflamed endothelium. In general, initial in vitro binding studies with targeted MB are performed using phase contrast microscopy. Difficulties in the identification of MB in standard phase contrast microscopy, however, generally result in high variability, high observer dependency, and low reproducibility. To overcome these shortcomings, we here describe a simple post-loading strategy for labeling polymer-based MB with fluorophores, and we show that the use of rhodamine-loaded MB in combination with fluorescence microscopy substantially reduces the variability and the observer dependency of in vitro binding studies. In addition, we demonstrate that rhodamine-loaded MB can also be used for in vivo and ex vivo experimental setups, e.g., for analyzing MB binding to inflamed carotids using two-photon laser scanning microscopy, and for validating the binding of VEGFR2-targeted MB to tumor endothelium. These findings demonstrate that fluorescently labeled MB substantially facilitate translational molecular US studies, and they suggest that a similar synthetic strategy can be exploited for preparing drug-loaded MB, to enable image-guided, targeted, and triggered drug delivery to tumors and to sites of inflammation

    Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble

    No full text
    Ultrasound molecular imaging has great potential to impact early disease diagnosis, evaluation of disease progression and the development of target-specific therapy. In this paper, two neuropilin-1 (NRP) targeted peptides, CRPPR and ATWLPPR, were conjugated onto the surface of lipid microbubbles (MBs) to evaluate molecular imaging of tumor angiogenesis in a breast cancer model. Development of a molecular imaging agent using CRPPR has particular importance due to the previously demonstrated internalizing capability of this and similar ligands. In vitro, CRPPR MBs bound to an NRP-expressing cell line 2.6 and 15.6 times more than ATWLPPR MBs and non-targeted (NT) MBs, respectively, and the binding was inhibited by pretreating the cells with an NRP antibody. In vivo, the backscattered intensity within the tumor, relative to nearby vasculature, increased over time during the ~6 min circulation of the CRPPR-targeted contrast agents providing high contrast images of angiogenic tumors. Approximately 67% of the initial signal from CRPPR MBs remained bound after the majority of circulating MBs had cleared (8 min), 8 and 4.5 times greater than ATWLPPR and NT MBs, respectively. Finally, at 7–21 days after the first injection, we found that CRPPR MBs cleared faster from circulation and tumor accumulation was reduced likely due to a complement-mediated recognition of the targeted microbubble and a decrease in angiogenic vasculature, respectively. In summary, we find that CRPPR MBs specifically bind to NRP-expressing cells and provide an effective new agent for molecular imaging of angiogenesis
    corecore