1,513 research outputs found

    AdS flowing black funnels: Stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT

    Get PDF
    We construct stationary non-equilibrium black funnels locally asymptotic to global AdS4 in vacuum Einstein-Hilbert gravity with negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (ΔT0\Delta T \neq 0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While generators of the bulk future horizon evolve toward zero expansion in the far future, they begin at finite affine parameter with infinite expansion on a singular past horizon characterized by power-law divergences with universal exponents. We explore both the horizon generators and the boundary stress tensor in detail. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. The new parameter detunes the temperatures TbulkBHT_{bulk BH} and TbndyBHT_{bndy BH} of the bulk and boundary black holes, and we may then take \alpha = TbndyBH/TbulkBHT_\mathrm{bndy BH}/T_\mathrm{bulk BH} and \Delta T small to control the accuracy of the fluid-gravity approximation. In the small \alpha, \Delta T regime we find excellent agreement with our numerical solutions. For our cases the agreement also remains quite good even for α0.8\alpha \sim 0.8. In terms of a dual CFT, our \alpha = 1 solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes

    Rotating black droplet

    Get PDF
    We construct the gravitational dual, in the Unruh state, of the "jammed" phase of a CFT at strong coupling and infinite N on a fixed five-dimensional rotating Myers-Perry black hole with equal angular momenta. When the angular momenta are all zero, the solution corresponds to the five-dimensional generalization of the solution first studied by Figueras, Lucietti, and Wiseman. In the extremal limit, when the angular momenta of the Myers-Perry black hole are maximum, the Unruh, Boulware and Hartle-Hawking states degenerate. We give a detailed analysis of the corresponding holographic stress energy tensor for all values of the angular momenta, finding it to be regular at the horizon in all cases. We compare our results with existent literature on thermal states of free field theories on black hole backgrounds

    The role of electron-electron scattering in spin transport

    Full text link
    We investigate spin transport in quasi 2DEG formed by III-V semiconductor heterojunctions using the Monte Carlo method. The results obtained with and without electron-electron scattering are compared and appreciable difference between the two is found. The electron-electron scattering leads to suppression of Dyakonov-Perel mechanism (DP) and enhancement of Elliott-Yafet mechanism (EY). Finally, spin transport in InSb and GaAs heterostructures is investigated considering both DP and EY mechanisms. While DP mechanism dominates spin decoherence in GaAs, EY mechanism is found to dominate in high mobility InSb. Our simulations predict a lower spin relaxation/decoherence rate in wide gap semiconductors which is desirable for spin transport.Comment: to appear in Journal of Applied Physic

    The graceful exit from the anomaly-induced inflation: Supersymmetry as a key

    Get PDF
    The stable version of the anomaly-induced inflation does not need a fine tuning and leads to sufficient expansion of the Universe. The non-stable version (Starobinsky model) provides the graceful exit to the FRW phase. We indicate the possibility of the inflation which is stable at the beginning and unstable at the end. The effect is due to the soft supersymmetry breaking and the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion concerning the gravitational scale modified, the effect of massive particles in the last stage of inflation taken into accoun

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Complete phenomenological gravitational waveforms from spinning coalescing binaries

    Full text link
    The quest for gravitational waves from coalescing binaries is customarily performed by the LIGO-Virgo collaboration via matched filtering, which requires a detailed knowledge of the signal. Complete analytical coalescence waveforms are currently available only for the non-precessing binary systems. In this paper we introduce complete phenomenological waveforms for the dominant quadrupolar mode of generically spinning systems. These waveforms are constructed by bridging the gap between the analytically known inspiral phase, described by spin Taylor (T4) approximants in the restricted waveform approximation, and the ring-down phase through a phenomenological intermediate phase, calibrated by comparison with specific, numerically generated waveforms, describing equal mass systems with dimension-less spin magnitudes equal to 0.6. The overlap integral between numerical and phenomenological waveforms ranges between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v

    Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector

    Get PDF
    Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)

    Calculation of the electron mobility in III-V inversion layers with high-kappa dielectrics

    Get PDF
    We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-kappa dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening is included and compared to the dielectric screening in the static limit and with the commonly used screening model obtained by defining an effective screening wave vector. The electron mobility components limited by substrate LO phonons and interfacial modes are calculated for In0.53Ga0.47As and GaAs substrates with SiO2 and HfO2 gate dielectrics. The mobility components limited by the LO-modes and interfacial phonons are also investigated as a function of temperature. Scattering with surface roughness, fixed interface charge, and nonpolar-phonons is also included to judge the relative impact of each scattering mechanism in the total mobility for In0.53Ga0.47As with HfO2 gate dielectric. We show that InGaAs is affected by interfacial-phonon scattering to an extent larger than Si, lowering the expected performance, but probably not enough to question the technological relevance of InGaAs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3500553

    In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)

    Get PDF
    The use of C, He and O ions as projectiles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of their enhanced relative biological effectiveness and oxygen enhancement ratio, when compared to the protons one. The advantages related to the incoming radiation improved efficacy are requiring an accurate online monitor of the dose release spatial distribution. Such monitor is necessary to prevent unwanted damage to the tissues surrounding the tumour that can arise, for example, due to morphological changes occurred in the patient during the treatment with respect to the initial CT scan. PT treatments with ions can be monitored by detecting the secondary radiation produced by the primary beam interactions with the patient body along the path towards the target volume. Charged fragments produced in the nuclear process of projectile fragmentation can be emitted at large angles with respect to the incoming beam direction and can be detected with high efficiency in a nearly background-free environment. The Dose Profiler (DP) detector, developed within the INSIDE project, is a scintillating fibre tracker that allows an online reconstruction and backtracking of such secondary charged fragments. The construction and preliminary in-room tests performed on the DP, carried out using the 12C ions beam of the CNAO treatment centre using an anthropomorphic phantom as a target, will be reviewed in this contribution. The impact of the secondary fragments interactions with the patient body will be discussed in view of a clinical application. Furthermore, the results implications for a pre-clinical trial on CNAO patients, foreseen in 2019, will be discussed
    corecore