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1 Introduction

Since the revolutionary discovery that black holes radiate with an almost thermal spectrum,

much effort has been devoted to gaining a deeper understanding of this process. While

considerable advances have been made since Hawking’s seminal paper [2], there are still

ample open issues that remain to be addressed. In particular, most of the work regarding

Hawking radiation has focused on free fields; studying the behavior of interacting fields

around a black hole is more challenging. Though some progress has been made with weakly

interacting fields using perturbative methods [3], strongly interacting fields pose a much

more difficult problem.

Fortunately, the AdS/CFT correspondence [4] provides an invaluable tool for tackling

this problem. Early applications of holography to studying Hawking radiation coupled

the field theory to dynamical gravity, which is holographically dual to Randall-Sundrum

braneworld models [5–7]. However, if one is not interested in the backreaction of the

Hawking radiation on the spacetime, the CFT can be placed on a nondynamical background

spacetime ∂M. Then AdS/CFT claims that the CFT is dual to a spacetime M with

conformal boundary ∂M, with M a solution to classical Einstein gravity with negative

cosmological constant. While most applications of the duality place the field theory on

ordinary Minkowski space, one may in principle select any conformal boundary structure

one desires. In particular, in order to study Hawking radiation in the CFT, [8, 9] considered
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a CFT living on fixed d-dimensional background containing a black hole of size R and

temperature TBH. Far away from the black hole, the CFT is in a thermal state with a

prescribed temperature T∞. From the perspective of the CFT, the black hole and the

plasma at infinity act as heat sources and sinks, and one can study the exchange of heat

between them.

In fact, a complete picture requires the introduction of another parameter T0, repre-

senting the temperature of the CFT plasma near the black hole. Though it might seem

natural to take this temperature to be equal to that of the black hole, it is possible to

set T0 6= TBH at the expense of making the CFT stress tensor singular at the black hole

horizon. Details of this so-called “detuning” can be found in [10], though in our solution

we will only consider the “tuned” case T0 = TBH and will therefore never introduce the

parameter T0 explicitly.

Regarding the dual geometry, [8, 9] conjecture two possible families of solutions: so-

called “black droplets” and “black funnels,” illustrated in Figure 1. In the black funnel

solutions, the horizon of the boundary black hole is connected to an asymptotically planar

horizon in the bulk; this connectedness manifests itself in the CFT as strong coupling

between the boundary black hole and the heat bath at infinity, leading to an exchange of

heat between them. In the black droplet solutions, on the other hand, the horizon of the

boundary black hole is disconnected from the asymptotically planar horizon in the bulk,

implying that the boundary black hole is not coupled to the plasma at infinity (or rather,

that the coupling is suppressed by O(1/N2) is this large-N picture). From the perspective

of the CFT, the transition from funnels to droplets is reminiscent of many soft condensed

matter systems which exhibit a transition from a fluid-like behavior to rigid behavior with

no flow (e.g. sand in an hourglass, cars on a highway). To borrow from the soft condensed

matter nomenclature, we will refer to the the CFT transition from funnels to droplets as a

“jamming” phase transition, and will denote the CFT dual of the droplet as a “jammed”

phase1.

The authors of [8, 9] postulate that this jamming transition might occur as the size R

of the boundary black hole (or alternatively, as the temperature T∞ of the heat bath at

infinity) is varied. Thus the dimensionless parameter RT∞ should characterize which phase

is thermodynamically preferred.

An analytic construction of black droplets and black funnels has only been performed

in select few cases. In [11, 12], black droplets and funnels were constructed from the AdS

C-metric, while [13] constructed analytic funnels in d = 2 dual to the Unruh state of the

CFT (black droplets cannot exist in d = 2). However, many of the most interesting cases

(notably, asymptotically flat boundary black holes in d > 2) do not lend themselves to

analytic construction, and one must resort to numerics. To that end, [14] numerically con-

structed black funnels dual to the Hartle-Hawking state of the CFT, while [10] constructed

so-called global funnels to study the exchange of heat between two boundary black holes

of different temperatures.

Slightly less effort has been made to construct black droplets, however. Besides those

1We thank Jean Carlson for introducing us to this terminology.
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Figure 1. A sketch of the relevant solutions: (a): black funnel and (b): black droplet above a

deformed planar black hole. Both describe possible states of dual field theories in contact with

heat baths at temperature T∞ on spacetimes containing black holes of horizon size R. The top line

corresponds to the boundary, with the dots denoting the horizon of the boundary black hole. The

shaded regions are those inside the bulk horizons.

obtained from the AdS C-metric, the only construction to date has been that of [1], which

constructed a droplet dual to the Unruh state of a CFT on a d = 4 Schwarzschild back-

ground (hereafter generally denoted Schwd). In our notation, this solution sets T∞ = 0, so

that the bulk geometry is that of a black droplet suspended above an extremal Poincaré

horizon deep in the bulk. The boundary stress tensor contains no flux terms, and the

nonzero components of the stress tensor exhibit a 1/r5 power-law falloff at large distances

from the black hole. This relatively rapid falloff is characteristic of the jammed phase, as it

indicates that the CFT plasma is relatively well-localized near the black hole. Interestingly,

the stress tensor is regular on both the past and future horizons; the authors speculate that

the inclusion of one-loop graviton corrections in the bulk would render the stress tensor

singular on the past horizon, as is typical of Unruh states.

Perhaps some clarifying remarks are in order regarding our nomenclature of CFT

states. In free field theory, the distinction between the Unruh, Hartle-Hawking, and Boul-

ware vacua is conventionally based on the behavior of the field theory stress tensor at the

horizon and at null infinity. In the Hartle-Hawking state, the stress tensor is regular on

both the future and past horizon; in the Unruh state, the stress tensor is empty at past null

infinity and regular on the future horizon; and in the Boulware state, the stress tensor is

empty at both future and past null infinity. However, one can also understand these behav-

iors very physically from the point of view of the field theory. The Hartle-Hawking state is

one in which the field theory is in thermal equilibrium, with all temperatures equal; in our

language, TBH = T0 = T∞. The Unruh state is one in which the temperature of the heat

bath at infinity is taken to zero (so that for any nonzero T0, the black hole acts as a source

for heat to flow to infinity); T∞ = 0. Finally, the Boulware state is the state of minimum

energy, requiring the temperature of the field theory to be zero everywhere; T0 = T∞ = 0.

A crucial point to note is the appearance of the field theory temperature T0 (rather than

the black hole temperature TBH) in the above definitions. Thus the regularity properties
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of the field theory stress tensor in a given state can be thought of as a consequence of how

the temperatures T0 and TBH are tuned, and not as a defining feature of the state itself.

For instance, the ubiquitous singularity of the Boulware vacuum on the horizon of a nonex-

tremal black hole is due to the detuning T0 = 0 6= TBH, whereas the Hartle-Hawking state

is generally regular on the black hole horizon because of the requirement that T0 = TBH.

When labeling states in strongly coupled CFTs, we will therefore operate under these latter

definitions in terms of the temperatures T0 and T∞ of the CFT. For example, we would

claim that the CFT dual to the droplet constructed in [1] is in the Unruh state, but not the

Boulware state, because T∞ = 0 but T0 = TBH 6= 0. These definitions are also independent

of whether the CFT is in the jammed or unjammed phase, so that the categorization of

the state and phase of the CFT provide complementary descriptions of its behavior.

Our purpose in this paper is to generalize the result of [1] by adding a new ingre-

dient: rotation. Though [9, 15] compute the stress tensor on a rotating BTZ black hole

background, the effect of rotation on a stress tensor in an asympototically flat black hole

spacetime has not been studied extensively. One might naturally expect that the inclusion

of rotation can be accomplished by generalizing the result of [1] to a Kerr spacetime, but

because the Kerr metric is cohomogeneity two, this would lead to a cohomogeneity three

problem in the bulk. Instead, we take the boundary spacetime to be the d = 5 equal-

angular-momentum Myers-Perry metric [16] (see also [17] for a review), which is known to

be cohomogeneity one and thus leads to a cohomogeneity two problem in the bulk.

The generalization to a non-extremal rotating black droplet should not be expected to

exhibit very different behavior from its non-rotating counterpart: the boundary black hole

still acts as a heat source at finite and nonzero temperature, and one studies the thermal

coupling between the black hole and a zero-temperature heat bath at infinity. However,

the presence of rotation provides us with a new parameter to tune, which we can use to

take the black hole to extremality; this will allow us to take T0 to zero without the need

to perform any detuning. For this reason, from this point on we will only refer to TBH,

with T0 = TBH understood implicitly.

Taking TBH to zero with T∞ fixed at zero can be thought of as some limit of an Unruh

state. Similarly, the fact that both the extremal black hole and the heat bath at infinity

are at zero temperature places the CFT in the Boulware vacuum. Finally, since in the

extremal case TBH = T∞, the CFT can be thought of as being in a Hartle-Hawking state

(though perhaps it would be more correct to refer to this as a zero-temperature limit of a

Hartle-Hawking state). Thus the extremal droplet is in some sense dual to a degenerate

state which is a Boulware state and a limit of the Hartle-Hawking and Unruh states.

This paper is organized as follows. In Section 2, we review the behavior of stress

tensors on black hole spacetimes, and calculate the form our stress tensor must take on

a Schw5 background (i.e. when the angular momentum of the Myers-Perry black hole is

taken to zero). In Section 3, we briefly review the numerical method used and discuss the

numerical construction of our solution. In Section 4, we compare our numerically extracted

stress tensor to the expectations in Section 2, and discuss future directions to pursue.

Note: In the final stages of this work we learned of [18], which also constructs ro-

tating black droplets and may have some overlap with our work. Their paper will appear
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simultaneously with ours on the arXiv.

2 A Review of Stress Tensors in Curved Spacetime

A common difficulty of field theories in curved spacetime is the lack of an unambiguous

notion of “particle.” This poses no problem, however, if one instead limits oneself only to

currents. As discussed in [19], when a physical system is probed, the objects that couple

to probe fields are currents. In other words, the currents are the objects that appear in

the interaction terms in the equations of motion of an interacting field. In addition, a

current is a genuinely local object and should retain a well-defined meaning even in the

presence of strong external fields (such as spacetime curvature). Thus most of the work

devoted to understanding the process of radiation from black holes has focused not on

quantum fields themselves, but on the renormalized vacuum expectation value (v.e.v.) of

their stress-energy tensor 〈T µν〉.
In particular, the stress tensor of quantum fields can exhibit properties that are for-

bidden of classical stress tensors. For instance, though a classical energy density must be

non-negative, it is well-known that even in flat spacetime, the local energy density of a

quantum field need not obey this same restriction2. Perhaps the most famous example of a

negative energy density is the Casimir effect [20], though the existence of negative energy

densities in local quantum field theory is in fact quite general [21].

In the context of general relativity, [19] studied the behavior of the energy-momentum

tensor of a massless scalar field in a two-dimensional spacetime containing an accelerating

mirror. While the total energy radiated by the mirror was positive, a negative energy

density and energy flux were present in the region near the mirror, whereas far from the

mirror the stress tensor took the classical form of an outward flux of positive energy. A

similar result was found by [22], which calculated the renormalized v.e.v. of the stress

tensor of a massless scalar field in a two-dimensional model of black hole collapse. As in

the case of the radiating mirror, the near-horizon region of the newly-formed black hole

was characterized by a negative energy density and a flux of negative energy flowing into

the black hole, while far from the black hole the stress tensor again took the form of

an outward flux of positive energy. These results are consistent with Hawking’s picture

of particle-antiparticle creation near the horizon of a black hole, where negative-energy

particles flow into the black hole while their positive-energy partners radiate to infinity:

by conservation of energy, a positive-energy flux at infinity should be accompanied by a

negative-energy flux through the black hole horizon.

These exact results were obtained by exploiting the conformal flatness of two-dimensional

spacetimes. Nevertheless, good approximations to thermal stress tensors have been ob-

tained in higher dimensions. Notably, [23] used the Bekenstein-Parker Gaussian path inte-

gral approximation [24] to find the approximate form of the stress tensor of a conformally

2Here, we define the local energy density as measured by an observer with velocity uµ as

ρ = uµuν〈Tµν〉
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invariant scalar field in the Hartle-Hawking state on the (four-dimensional) Schwarzschild

background. The behavior of the stress tensor was similar to the two-dimensional case: at

infinity, the stress tensor behaved like a classical thermal stress tensor, while sufficiently

near the horizon (for r . 2.34M) the energy density became negative. These results were

consistent with earlier numerical calculations [25] of the stress tensor on the bifurcation

two-sphere of Schwarzschild. However, while one naturally expects a negative energy flux

near the horizon in an Unruh state, it is not clear whether the ubiquity of negative energy

densities near the horizon should extend to Hartle-Hawking states as well.

All of these results focused explicitly on conformally invariant noninteracting massless

scalar fields. One might therefore imagine that they have little bearing on the stress

tensor we will obtain for our strongly coupled CFT. In fact, the jammed phase dual to the

droplet we construct cannot exist in a free field theory, so a priori none of the results listed

above can even approximately predict the behavior of the stress tensor we will extract.

Nevertheless, it is possible (and indeed, quite probable) that the stress tensor of quantum

fields on black hole backgrounds should exhibit some kind of universal qualitative behavior.

This universal structure was studied in detail by Christensen and Fulling [26], who sought

the general behavior of a static, spherically symmetric stress tensor on Schw4 by solving

the conservation equations

∇µT
µν = 0 (2.1)

directly, without restriction to any particular kind of field theory. Their results are partic-

ularly useful to our case, because they are also valid in the case of a strongly coupled CFT.

In fact, Schw5 is just the zero-angular momentum limit of the Myers-Perry black holes that

we Schwarzschild in higher dimensions.

2.1 The General Static Spherically Symmetric Stress Tensor on Schwd

Consider the d-dimensional Schwarzschild metric Schwd (also called the Tangherlini metric,

after its discoverer [27]):

ds2Schw = −f(r) dt2 + dr2

f(r)
+ r2 dΩ2

d−2, f(r) ≡ 1−
(r0
r

)d−3
. (2.2)

This spacetime is qualitatively identical to the familiar four-dimensional Schwarzschild,

with horizon located at r = r0 and a temperature T = f ′(r0)/4π = (d − 3)/4πr0. Now, a

static, spherically symmetric stress tensor must take the form

T µν =



T tt T

t
r 0

T rt T
r
r 0

0 0 TΩ
Ωδ

i
j


 , (2.3)

where all components are functions of r only and the indices i, j run over the angular coor-

dinates. Inserting this form into the conservation equations (2.1) and using the metric (2.2),
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we obtain the following differential equations:

0 = ∂rT
r
t +

d− 2

r
T rt, (2.4a)

0 = ∂rT
r
r +

(
d− 2

r
− d− 3

2r0

(r0/r)
d−2

f(r)

)
T rr −

d− 3

2r0

(r0/r)
d−2

f(r)
T tt −

d− 2

r
TΩ

Ω. (2.4b)

Equation (2.4a) can be immediately integrated to yield

T rt = K
(r0
r

)d−2
. (2.5)

To integrate equation (2.4b), we first substitute T tt = T µµ−T rr− (d− 2)TΩ
Ω, and obtain

T rr =
(r0/r)

d−2

f(r)
[Q−K+

1

2

∫ r

r0

(
(d− 3)T µµ(r

′) + (d− 2)
(
2(r′/r0)

d−3 − d+ 1
)
TΩ

Ω(r
′)
) dr′
r0

]
. (2.6)

Equations (2.5) and (2.6) express the most general static, spherically symmetric stress ten-

sor on Schwd in terms of two arbitrary constants Q and K and two arbitrary functions T µµ
and TΩ

Ω. In order to study the physical behavior of these solutions, it will prove useful to

define

Θ(r) ≡ TΩ
Ω(r)−

1

2(d− 2)
T µµ(r), (2.7a)

G(r) ≡ d− 2

2

∫ r

r0

(
2(r′/r0)

d−3 − d+ 1
)
Θ(r′)

dr′

r0
, (2.7b)

H(r) ≡ 1

2

∫ r

r0

(
d− 5

2
+ (r′/r0)

d−3

)
T µµ(r

′)
dr′

r0
. (2.7c)

Converting to the tortoise coordinate dr∗ = dr/f(r), the stress tensor can then be expressed

as the sum of four pieces:

T µν = (T(1))
µ
ν
+ (T(2))

µ
ν
+ (T(3))

µ
ν
+ (T(4))

µ
ν
, (2.8)

where (in t, r∗ coordinates)

(T(1))
µ
ν
= diag

{
−(r0/r)

d−2

f(r)
H(r) +

1

2
T µµ(r),

(r0/r)
d−2

f(r)
H(r),

1

2(d − 2)
T µµ(r) δ

i
j

}
,

(2.9a)

(T(2))
µ
ν
= K

(r0/r)
d−2

f(r)




1 1 0

−1 −1 0

0 0 0


 , (2.9b)

(T(3))
µ
ν
= diag

{
−(r0/r)

d−2

f(r)
G(r)− (d− 2)Θ(r),

(r0/r)
d−2

f(r)
G(r), Θ(r) δij

}
, (2.9c)

(T(4))
µ
ν
= Q

(r0/r)
d−2

f(r)
diag {−1, 1, 0} . (2.9d)
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By converting to ingoing Eddington-Finkelstein coordinates dv = dt+dr∗, it is straightfor-

ward to show that the stress tensor is regular on the future horizon only ifQ vanishes3. Thus

the above decomposition is convenient because each of the T(i) isolates some interesting

physical behavior of the stress tensor: T(1) is the only of the T(i) with a nonzero trace (and

in fact, it is only a function of the trace T µµ); T(2) contains nonzero flux terms T r∗ t; T(3) is

the only of the T(i) which is both traceless and has nonzero tangential pressure components;

and T(4) is singular on the future horizon.

Christensen and Fulling proceed to make use of these results to study the behavior of

the stress tensor of fields in the Unruh, Hartle-Hawking, and Boulware vacua on Schw4.

Our goal, however, is less broad: we only wish to gain some insight on the v.e.v. of the stress

tensor of the jammed phase of the CFT. To that end, we make the following observations

regarding our droplet:

• The trace anomaly of any odd-dimensional CFT vanishes. Since we work in d = 5,

we expect T(1) to make no contribution to our stress tensor.

• According to the arguments reviewed briefly at the end of Section 1, we expect black

droplets to be dual to a jammed phase of the CFT. Such phases are characterized

by a suppressed exchange of heat between the black hole and the thermal plasma at

infinity, so we should expect our solution to radiate no flux. From (2.5), it is clear

that the total flux radiated to infinity from the black hole is a constant proportional

to K, so we conclude that K = 0 and so T(2) makes no contribution to our stress

tensor.

• Unlike the past horizon, which is present only in maximal analytic extensions of

black hole spacetimes, the future horizon is a genuine physical location present in

any realistic model of gravitational collapse. We thus expect physical quantities to

be regular there. In particular, we require the stress tensor of the jammed CFT to

be regular there; this implies that Q = 0, so that T(4) does not contribute to the

stress tensor either (incidentally, since we also have K = 0, this means that the stress

tensor will be regular at the past horizon as well).

We therefore conclude that only contribution to the stress tensor of the CFT state dual

to the Schw5 droplet should come from (2.9c), and so should only depend on the one

function Θ(r).

In fact, we can go further and make claims about the behavior of Θ(r). The free

field results summarized earlier in this section should not all apply to our stress tensor,

but we might draw certain universal behavior from them to make a guess at the behavior

of Θ(r) (which we will then verify with our numerics). First, note that the negative

energy density near the horizon present in free field theories is an indication of the highly

non-classical nature of the field there; only far from the black hole does the stress tensor

of the free fields become classical. But the jammed phase of the CFT is a highly non-

classical state, as it consists of a plasma “halo” surrounding the black hole. In analogy

3Regularity on the past horizon requires Q = 2K.
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with the free field theory results, we might therefore conjecture that the energy density

of the strongly coupled CFT becomes negative near the horizon as well. In that case, we

expand (T(3))
t
t
= −3Θ(r0)/2 + O(r − r0) to see that a negative energy density near the

horizon implies that Θ is negative there.

Far from the black hole, one can argue that due to the weak coupling between the

black hole and the heat bath at infinity, the components of the stress tensor should fall

off “rapidly”. This statement can be quantified by following the logic of [1]: there, the

authors find that the v.e.v. of a CFT dual to a d = 4 Schwarzschild droplet exhibits a 1/r5

falloff. In order to explain this falloff, the authors invoke the results of [28], in which the

linearized gravitational field created by a point-like source is calculated in the context of

the Randall-Sundrum single braneworld model. By using the behavior of the gravitational

field far from the source, Einstein’s equations

Rµν −
1

2
Rgµν = 8πGN 〈Tµν〉 (2.10)

can be used to obtain the expected large-r behavior of the stress tensor. For the case

of a d = 4 dimensional spacetime, the predicted falloff of the components 〈T µν〉 goes

like 1/r5, consistent with the results of [1]. One can generalize this argument to show that

in d = 5 dimensions, we expect a 1/r7 falloff4. This implies that for our solution, we should

have Θ(r) ∼ 1/r7 and G(r) ∼ 1/r4 at large r.

2.2 A Little Spin

Finally, let us consider the effect of giving the boundary black hole a nonzero angular

momentum, thus “spinning” the droplet. Unfortunately, an analysis similar to that per-

formed for the nonspinning case is not illuminating, because even with the conservation

equations (2.1), there are too many independent functions in the stress tensor for a gen-

eral solution to be tractable. Nevertheless, we can make some qualitative claims based on

physical arguments.

First, we clearly expect there to be angular flux terms as the CFT plasma is dragged

around the spinning black hole. This flux density should be maximal near the horizon,

and decrease monotonically away from the black hole. Similarly, the fact that the CFT

plasma is being forced to rotate around the black hole leads us to expect that a centrifugal

barrier forms around the black hole. Indeed, by considering timelike geodesics in the

equatorial plane of the five-dimensional equal-angular-momentum Myers-Perry black hole,

we can check that the centrifugal barrier of the effective radial potential grows and moves

away from the horizon as the spin of the black hole is increased. This barrier may act

to confine the plasma near the black hole horizon, effectively acting as a box around the

black hole. We might expect that this effect would present itself as an increase in the

radial and tangential pressures near the horizon. We should similarly expect an increase

in the magnitude of the (negative) energy density near the black hole, as a buildup of

negative-energy modes forms in the centrifugal box. This physical reasoning leads us to

4We greatly thank the authors of [18] for finding a mistake in an earlier version of this paper, where we

incorrectly claimed a falloff of 1/r6 in five dimensions.
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conjecture that all components of the stress tensor should increase in magnitude as the

angular momentum of the black hole is increased.

2.3 Extremal Horizons

Our family of solution black holes can be taken all the way to extremality. This limit is

particularly interesting, as the causal structure of an extremal black hole is qualitatively

very different from its non-extremal relatives. One might therefore imagine that the stress

tensor of matter fields on extremal black hole spacetimes exhibits qualitatively different

behavior as well. In particular, the fact that the horizon of an extremal black hole is a

Cauchy horizon would näıvely lead one to believe that stress tensors should generically be

singular on the future horizon of extremal black holes. This question has been addressed

by [29–32], who studied the regularity of the v.e.v. of the stress tensor outside an extremal

dimensionally reduced two-dimensional Reissner-Nordström (RN) black hole. In short, a

static stress tensor (i.e. one sharing the same isometries as the background spacetime) ex-

hibits a mild singularity on the future horizon, whereas the stress tensor of a massive scalar

field propagating on an extremal two-dimensional RN geometry forming via gravitational

collapse is regular thanks to the presence of decaying (but nonzero) flux terms. As shown

in [33], this subtle issue disappears in four dimensions, as the stress tensor of a scalar field

in the zero-temperature vacuum state on the full four-dimensional RN spacetime is regular

everywhere without the need for flux terms.

To our knowledge, the stress tensor of a field theory on a rotating extremal black hole

background has not yet been studied even in free field theory. The four-dimensional RN

results might lead us to expect that the stress tensor on extremal rotating black hole space-

times should similarly be regular on the future horizon, though a key difference between

the RN and rotating case is the inherent presence of matter in the RN spacetime. In any

case, the fundamental similarity between the causal structures of extremal charged and

rotating black holes makes it quite plausible to expect that the CFT stress tensor dual to

our rotating droplet will be regular on the future horizon even in the extremal limit.

3 Constructing a Spinning Droplet

3.1 The DeTurck Method

The standard approach in AdS/CFT is to solve the vacuum Einstein field equations with

negative cosmological constant5

Eab ≡ Rab −
1

2
Rgab + Λgab = 0 (3.1)

subject to certain boundary conditions. The subleading behavior of the metric gab near the

conformal boundary then contains information about the stress tensor of the dual CFT.

As is well known, Einstein’s equations do not have a well defined character unless a gauge

choice is made. Because the solutions we are searching for are stationary, one can hope to

5Here and below, we will use lower-case Latin letters to denote bulk indices, and lower-case Greek letters

to denote boundary indices.
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choose a clever gauge where the equations (3.1), or a deformation thereof, are manifestly

elliptic. This is exactly what the DeTurck trick does for us [1, 34, 35]. In short, one

modifies the equations (3.1) by introducing a new vector ξa (called the DeTurck vector):

EHab ≡ Eab −∇(aξb) = 0, ξa = gbc
(
Γabc − Γ̄abc

)
, (3.2)

where Γ̄abc is the Levi-Civita connection of some reference metric ḡ. Equation (3.2) is called

the Einstein-DeTurck or harmonic Einstein equation. One can show that for stationary

solutions with Killing horizons, the above choice of the DeTurck vector renders the Einstein-

DeTurck equation elliptic. Solving the Einstein-deTurck equations then reduces to solving a

boundary-value problem. Note, however, that solutions to the Einstein-DeTurck equation

are not solutions to the ordinary Einstein equations unless ξa = 0. To get around this

problem, one can show that the quantity Φ ≡ ξaξ
a must take its maximum value on the

boundaries of the domain of integration; thus if the reference metric ḡ is chosen with the

same boundary conditions as the metric g, Φ is zero on all boundaries of the integration

domain, and must therefore be zero everywhere within as well [1]. Then ξa is zero as

well, and a solution to the Einstein-DeTurck equation is also a solution to the Einstein

equations. Indeed, the claim that the Einstein-DeTurck equation automatically takes care

of gauge-fixing is justified by thinking of the condition ξa = 0 as just a choice of gauge,

which is a generalized harmonic gauge of the form ∆xa = Γ̄abcg
bc.

3.2 Droplet Ansatz

As mentioned at the end of Section 1, the boundary metric we want to impose is the

equal-angular-momentum d = 5 Myers-Perry solution [16]:

ds2MP = − g(r)
h(r)

dt2 +
dr2

g(r)
+ r2

[
h(r)

(
dψ +A(1) +Ω(r)dt

)2
+ dΣ2

2

]
, (3.3a)

g(r) ≡ (r2 − r20)(r
2 − β2(r2 + r20))

(1− β2)r4
, (3.3b)

h(r) ≡ r4 − β2(r4 − r40)

(1− β2)r4
, (3.3c)

Ω(r) ≡ βr30
r4 − β2(r4 − r40)

, (3.3d)

where dΣ2
2 is the Fubini-Study metric on CP 1, A(1) is the Kähler potential of CP 1, and β =

r0ΩH , with ΩH the angular velocity of the horizon. Explicit forms for A(1) and dΣ2
2 are

given by the expressions

A(1) =
1

2
cos θ dφ, dΣ2

2 =
1

4

(
dθ2 + sin2 θ dφ2

)
. (3.4)

For β = 0, the metric (3.3) reduces to d = 5 Schwarzschild (2.2) with the S3 written

as a Hopf fibration of S1 over CP 1; setting β2 = β2ext ≡ 1/2 yields the extremal solution.

The metric is cohomogeneity one owing to its U(2) symmetry, which implies that our bulk

solution will be cohomogeneity two.
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Let us compactify the range of the radial coordinate r to yield a metric more amenable

to our numerical approach. We also rescale t → r0 t and exploit the coordinate freedom

ψ → ψ + λt to shift Ω so that Ω(r0) = 0, Ω(∞) = −ΩH (this will simplify the boundary

conditions at the horizon later on). Defining a new radial coordinate y = 1 − (r0/r)
2, we

find

ds2MP = r20

{
−y h1(y)

h2(y)
dt2 +

(1− β2)dy2

4y h1(y)(1− y)3

+
1

1− y

[
h2(y)

1− β2

(
dψ +A(1) − β(1− β2)

y(2− y)

h2(y)
dt

)2

+ dΣ2
2

]}
, (3.5a)

h1(y) ≡ 1− β2(2− y), (3.5b)

h2(y) ≡ 1− β2y(2− y). (3.5c)

Our ansatz will need to have (3.5) as its conformal boundary.

Next, recall that we are considering black droplet solutions with T∞ = 0; this implies

that far into the bulk, the solution should approach the near-horizon geometry of pure AdS6
in Poincaré coordinates. Poincaré AdS6 in standard coordinates can be written as

ds2Poin =
ℓ2

z2
[
−dt2 + dz2 + dr2 + r2dΩ2

3

]
, (3.6)

where ℓ is the AdS6 length scale, related to the cosmological constant by ℓ2 = −10/Λ6.

Changing variables to (x, y) defined by

z =
1− x2√
1− y

, r = x

√
2− x2

1− y
, (3.7)

the Poincaré metric becomes

ds2Poin =
ℓ2

(1− x2)2

[
−(1− y) dt2 +

dy2

4(1− y)2
+

4 dx2

2− x2
+ x2(2− x2)dΩ2

3

]
. (3.8)

The near-horizon region corresponds to taking y close to 1.

We are now ready to write down an ansatz. Consider

ds2 =
ℓ2(1− y)

(1− x2)2

{
−y T h1(y)

h2(y)
dt2 +

Ady2

4yh1(y)(1 − y)3

+
4B

(1− y)(2 − x2)

(
dx+ F

x(1− x2)

2(1− y)
dy

)2

+
x2(2− x2)

1− y

[
h̃2(x, y)C

(
dψ +A(1) −G

y(2− y)

h2(y)
dt

)2

+ S dΣ2
2

]}
, (3.9)

where

h̃2(x, y) ≡ 1 + x2
(
h2(y)

1− β2
− 1

)
, (3.10)

T , A, B, C, S, F , and G are all functions of x and y, and the coordinate range is the

rectangle (x, y) ∈ (0, 1) × (0, 1). For the non-extremal case β 6= 1/
√
2, our boundary

conditions are as follows:
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• At the conformal boundary x → 1, we take T = A/(1 − β2) = C = S = r20/ℓ
2, B =

1, G = β(1 − β2), and F = 0. Then the metric approaches

ds2 → ℓ2

(1− x)2

(
dx2 +

1− y

4ℓ2
ds2MP

)
(3.11)

as desired.

• Near the extremal Poincaré horizon y → 1, we take T = A/(1− β2) = B = C = S =

1, G = const. = β(1 − β2), and F = 0 (note that the constant value of G is fixed

by requiring consistency with the boundary condition at x = 1). Changing to a new

coordinate ψ → ψ + βt removes the dt cross-terms, and we recover the y → 1 limit

of (3.8).

• At the horizon y → 0, we require regularity of the metric, which imposes a relationship

between T and A. In particular, we must have T/A = (r0κ/(1 − 2β2))2, where κ =

(1 − 2β2)/(r0
√

1− β2) is the surface gravity of the boundary black hole. Thus we

find T/A = 1/(1 − β2). In addition, expanding the equations of motion and the

condition ξa = 0 order-by-order near y = 0 gives Robin conditions on ∂yMi|y=0

for Mi = {T,A,B,C, S, F,G}.

• At the fixed point of the U(2) isometry x = 0, we require regularity as well. Again,

this implies that all metric functions must be smooth functions of x2, giving the

Neumann conditions ∂xMi|x=0 = 0. In addition, note that while the forms x2(dψ +

A(1)) and xdx are regular at x = 0, in general the metric components

2B dx2 + 2x2
[
h̃2(x, y)C

(
dψ +A(1)

)2
+ S dΣ2

2

]
(3.12)

are not. In order to make the above expression regular, we must impose that B =

C = S at x = 0, so that

2B dx2 + 2x2
[
h̃2(x, y)C

(
dψ +A(1)

)2
+ S dΣ2

2

]
→ 2S(dx2 + x2dΩ2

3), (3.13)

which is manifestly regular there.

Having understood the boundary conditions on each side of the computational rectangle,

we choose the reference metric. Noting from (3.5) that the boundary black hole size r0
enters only as a conformal factor, we can choose without loss of generality to set r0 = ℓ.

Then the boundary conditions become consistent, and we take the reference metric to be

the ansatz (3.9) with T = A/(1− β2) = B = C = S = 1, G = β(1− β2), and F = 0.

The extremal case (β = βext ≡ 1/
√
2) takes a little more care. Though our ansatz (3.9)

still applies, one finds that as extremality is approached the metric function F attains a

very large value along y = 0 near x = 0, leading to large numerical errors. To alleviate

the problem, we rewrite (3.9) in terms of a new metric function F̃ = yF ; we then find

that the numerics are much more well-behaved when written in terms of the new F̃ rather

than the old F . Then the boundary conditions at the conformal boundary, fixed point
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Figure 2. The maximum value of the square of the DeTurck vector Φ as a function of N for β = 0

(circles), 0.6 (diamonds), and βext ≈ 0.707 (asterisks).

of the U(2) isometry, and extremal Poincaré horizon remain the same as those discussed

above, while at the extremal droplet horizon we require F̃ = 0. In addition, converting to

Eddington-Finkelstein coordinates and requiring regularity at the extremal droplet horizon

imposes the usual regularity condition A(x, 0) = (1 − β2ext)T (x, 0) = T (x, 0)/2, as well as

the condition G(x, 0) = const. = βext(1 − β2ext) = 1/
√
8. Boundary conditions on the

other metric functions are obtained by expanding the equations of motion order-by-order

near y = 0 and requiring that they vanish to leading order.

3.3 Numerics

We approximate the Einstein-DeTurck equation (3.2) with the ansatz (3.9) using pseu-

dospectral collocation methods on a Chebyshev grid. The resulting nonlinear algebraic

equations are solved using a damped Newton-Raphson method. We monitor the damping

with |EHab|; that is, we ensure that each iteration of the Newton’s method decrease the

magnitude of EHab. Due to the maximum principle that Φ ≡ ξaξ
a obeys, we can monitor

the error in our solutions by monitoring the maximum value of Φ. In Figure 2, we plot the

maximum value of Φ as a function of the number N of grid points for three different values

of the rotation parameter β, showing the expected exponential decrease. Note that we will

find later that the accuracy of the extracted of the stress tensor depends strongly on the

number of grid points used along the x-direction, so for all results shown in this paper, we

use an Nx ×Ny = 81× 41 grid.

3.4 Extraction of the Stress Tensor

In order to extract the boundary stress tensor from our solutions, we follow the approach

used in [14]. In short, we first expand the metric functions Mi as a power series in x off of

the boundary at x = 1:

Mi(x, y) =
∑

n=0

M
(n)
i (y)(1− x)n + ln(1− x)

∑

n=0

M̃
(n)
i (y)(1− x)n, (3.14)
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where the logarithmic terms only appear for β 6= 0 and at no lower order than n = 5.

Inserting these expansions into (3.2) and in addition imposing ξa = 0 allows us to solve for

the coefficients of the power series order-by-order in (1 − x). The expansion is unique up

to n = 4 for the functions {T,A,C, S, F,G} and up to n = 5 for the function B. We then

change to Fefferman-Graham coordinates (z̃, ỹ) using an expansion of the form

1− x2 =
√

1− ỹ z̃ +
∑

n=2

X(n)(ỹ)z̃n, (3.15a)

y = ỹ +
∑

n=1

Y (n)(ỹ)z̃n, (3.15b)

where theO(z̃) term in the expansion for x fixes the conformal frame, and we have neglected

potential logarithms as they do not appear up to the order we need. Requiring that

gz̃z̃ = ℓ2/z̃2 and gz̃ỹ = 0 order-by-order in z̃ yields a set of algebraic equations that can be

solved for the coefficients X(n)(ỹ), Y (n)(ỹ). Then we find that the metric takes the form

ds2 =
ℓ2

z̃2
[
dz̃2 + ℓ−2ds2MP + z̃5hµν dx

µ dxν +O(z̃)6
]
, (3.16)

where hµν is only a function of the boundary coordinates xµ. According to the prescription

of [36], the renormalized v.e.v. of the boundary stress tensor is then

〈Tµν〉 =
5ℓ4

16πG
(6)
N

hµν . (3.17)

The general expressions for the coefficients M
(n)
i , M̃

(n)
i , X(n), Y (n) and for the stress

tensor are too cumbersome to reproduce in this paper, but they become tractable in the

nonrotating case β = 0. In Appendix A, we give the β = 0 expressions for M
(n)
i , X(n),

and Y (n) up to the order we need in order to extract the stress tensor and check its

tracelessness and transversality. As expected from our arguments in Section 2.1, the stress

tensor is given precisely by the expression (2.9c), with6

Θ(y) = − 5ℓ4

16πG
(6)
N

(1− y)5/2
[
14(1 − 2y)a5(y) + (1− y)(176 − 1712y + 2368y2 + 14ya′5(y))

]

672(1 − 2y)
,

(3.18a)

G(y) =
5ℓ4

16πG
(6)
N

y(1− y)
(
88− 384y + 296y2 + 7a5(y)

)

224
, (3.18b)

where in an obvious abuse of notation we have written the functions Θ and G in terms

of the compactified radial coordinate y rather than the original coordinate r. We will

postpone a discussion of this result to Section 4.

Now let us return to the general β 6= 0 case and discuss how to extract the stress tensor

from our numerical data. The boundary stress tensor will take the form

〈Tµν〉dxµdν = Ttt dt
2 +Trr dr

2 +Tψψ
(
dψ +A(1)

)2
+2Ttψ

(
dψ +A(1)

)
dt+TΣΣdΣ

2
2. (3.19)

6Note that we drop the tilde on ỹ, since y and ỹ agree on the boundary.
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There are thus five functions to solve for, which can be expressed in terms of five of

the functions M
(5)
i which we will label as m

(5)
i ≡ {t5, a5, c5, g5, s5}. In principle, one

could extract these functions by taking five x-derivatives of (3.14) at x = 1. However,

in practice taking such high derivatives numerically gives very poorly behaved results.

Instead, we follow a slightly different approach: since we know the coefficients M
(n)
i for n ≤

4 analytically, we can write

Mi(x, y) −
∑4

n=0M
(n)
i (y)(1− x)n

(1− x)4
= m

(5)
i (y)(1− x) +O(1− x)2. (3.20)

With the numerically computed values for Mi(x, y), the left-hand side of (3.20) is known

numerically, so we perform a fit for the right-hand side to obtain the coefficients m
(5)
i .

In order to quantify the accuracy of our extracted stress tensor, we proceed as follows.

Although the equations of motion don’t give unique expressions for the coefficients m
(5)
i ,

they do provide two algebraic relations between these coefficients and a′5
7. Using one of

these relations, we can express t5 in terms of a5, c5, and g5 in an algebraic expression of

the form

t5(y) = T exact
5 (y, a5(y), c5(y), s5(y)) . (3.21)

Using the fitted values for the m5
i , we can therefore use the quantity

∆(y) ≡ 1− t5(y)

T exact
5 (y, a5(y), c5(y), s5(y))

, (3.22)

as a measure of the error introduced in extracting the m
(5)
i (physically, one can think of ∆

as a measure of how much the numerically extracted stress tensor fails to be traceless).

In Figure 3, we plot ∆ for the full range of β. We note that the relative error in our

extraction is . 0.4% for almost all β and y; only for y near 1 does ∆ become appreciable.

We emphasize that this error is solely due to the difficulty in extracting the m
(5)
i from the

numerical data, and is not a measure of the accuracy of our numerical solutions themselves.

In Figure 4, we plot the components of the stress tensor for various values of β. Recall

that to obtain the metric (3.5), we shifted the angular coordinate ψ to make gψt = 0 at

the horizon. As a result, the near-horizon behavior shown in Figure 4 physically represents

the stress tensor as measured by an observer co-rotating with the horizon. In addition, in

Figure 5 we plot the scalar invariant 〈Tµν〉 〈T µν〉.

3.4.1 Regularity at Horizon

From the discussion in Section 2.1 and the regularity of the functions (3.18), it is clear

that in the nonrotating case, the stress tensor of the CFT is regular on the future horizon

(and in fact, it is regular on the past horizon as well since K = Q = 0). One can similarly

examine the behavior of the stress tensor in the rotating case by passing to local ingoing

Eddington-Finkelstein coordinates. In the non-extremal case, we change coordinates to

dt = dv −
√
1− β2

1− 2β2
dy

2y
; (3.23)

7These relations enforce tracelessness and transversality of the stress tensor, i.e. conservation.
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then from (3.19), one finds that the stress tensor is regular on the future horizon only if

all the components 〈T µν〉 are finite and satisfy
〈
T tt

〉
= 〈T yy〉 on the horizon. We can

immediately see from Figure 4 that these conditions are satisfied, so the stress tensor is

regular on the non-extremal horizon.

Again, the extremal case requires more care. In this case, local ingoing Eddington-

Finkelstein coordinates are given by

dt = dv − 1√
2

(
1

y2
+

1

y

)
dy, (3.24a)

dψ = dψ′ − dy

2y
. (3.24b)

Then one again finds that the stress tensor is regular on the future horizon if it obeys the

same conditions as in the non-extremal case, and in addition obeys

√
2
〈
T tψ

〉
+ 2∂y

(〈
T tt

〉
− 〈T yy〉

)
= 0 (3.25)

on the horizon. It is easy to check that this condition is satisfied to within the expected ∼
1% accuracy.

4 Results and Discussion

Our numerical results exhibit the behavior expected based on our quantitative and heuristic

reasoning in Section 2. Let us begin with the nonrotating case β = 0. The expansion of the

equations of motion off of the boundary gave us a stress tensor of the form (2.9c) with the

functions Θ and G given in (3.18), which is precisely the form expected from the discussion

in Section 2.1. In particular, we find that the stress tensor is traceless, contains no flux

terms, and is regular at the future horizon. Once the numerically extracted functionsm5
i (y)
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Figure 4. The components hµν = 16πG
(6)
N 〈T µν〉 /5ℓ2 for the same values of β as Figure 3. Note

that htψ = 0 for β = 0. Note that the range of the coordinate y shown corresponds to the

range r0 ≤ r . 1.2 r0 in the original radial coordinate.

are inserted, we find that the energy density is negative everywhere. The magnitude of

the components of the stress tensor increases as the rotation parameter is increased, but

otherwise the qualitative behavior of the stress tensor doesn’t change when β 6= 0 except
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Figure 5. The scalar invariant hµνh
µν for the same values of β as Figure 3.

for the introduction of an angular flux term Ttψ.

As shown in Figure 3, the error in our extracted stress tensor becomes relatively large

near y = 1, making it difficult to reliably extract the falloff of the stress tensor components

at large r. In fact, these components appear to exhibit a falloff closer to (1− y)3 = (r0/r)
6

than to the (1−y)7/2 = (r0/r)
7 expected from the braneworld arguments of [1]. However, by

performing an expansion of the equations of motion about y = 1, one can show analytically

that the stress tensor components must indeed decay like (r0/r)
7; presumably, the use of

higher precision would allow us to extract this behavior numerically. In any case, our results

are much more well-behaved in the near-horizon region, where most of the interesting

physics lies.

The following physical pictures emerges. As expected, a strongly coupled large-N

CFT in a jammed phase forms a halo of negative-energy plasma around a black hole. The

stress tensor of the plasma falls off rapidly far from the black hole, indicating that the

plasma is well-localized around the black hole. The total energy of the plasma is negative,

indicating its highly non-classical nature. When the black hole is made to rotate, the

plasma is dragged along with the black hole. The plasma is trapped by the centrifugal

barrier created by this rotation, causing the energy density and pressures to increase in

magnitude.

The jammed phase is particularly interesting from the point of view of the CFT because

it has no analog in a free field theory: a similar static plasma localized around the black

hole could not exist in a noninteracting theory, as it would quickly fall into the black hole.

The jammed phase is thus an effect of the strongly coupled nature of the CFT.

One might therefore wonder how our droplet phase compares to the corresponding

black funnel phases (which do admit analogs in free field theory). Black funnels with T∞ =

0 must have a horizon that asymptotes to the extremal Poincaré AdS deep into the bulk; if

we require that the bulk horizon also join smoothly to the (non-extremal) boundary horizon,

the bulk horizon must have both a non-constant surface gravity and a non-constant angular

velocity, and will therefore not be a Killing horizon. We say that such funnel solutions will

“flow” in the sense that there exists some notion of a horizon velocity which moves either
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Figure 6. A sketch of a black funnel solution with T∞ = 0.

from the boundary black hole to infinity or vice versa. For non-extremal horizons, these

flowing funnels were constructed in [10], but construction of solutions with asymptotically

extremal horizons (as is necessary to have the boundary CFT be at zero temperature at

infinity) is more difficult.

In fact, it would seem that such funnel solutions might not even be relevant: according

to the discussion in Section 1, the conjectured jamming transition in the CFT should

be parametrized by the parameter RT∞, with small RT∞ favoring the jammed phase.

If T∞ = 0, we might expect based on this argument that the jammed phase of the CFT

will dominate the thermodynamic ensemble for any size of the boundary black hole.

However, recall that one basis for this conjectured phase transition was the potential

for Gregory-Laflamme-type instabilies of the bulk horizon [37]: if one starts with a black

funnel and lowers the temperature T∞, the asymptotically planar bulk horizon will sink

deeper into the bulk (cf. Figure 1). The näıve expectation is that this will narrow the neck

of the black funnel and leave it unstable to Gregory-Laflamme instabilities, causing it to

collapse into a black droplet. Taking T∞ → 0, this argument would lead one to expect that

the droplet solution would be the only thermodynamically preferred one.

This potential instability was studied to some extent in [14], which considered funnels

dual to a CFT on an asymptoticaly flat black hole spacetime. The size of the boundary

black hole was decreased (while keeping the temperature T∞ fixed) to explore whether

such Greogory-Laflamme instabilities would occur. Surprisingly, as the size of the bound-

ary black hole decreased, the neck of the funnel remained wide enough to prevent the

formation of such instabilities. Though far from exhaustive, this result implies that it is

possible for there to be stable funnels with T∞ = 0 which could compete with the droplet

solutions. A sketch of what such a solution might look like is shown in Figure 6 (in fact,

in [13] such funnels were explicitly constructed in d = 2, though the question of their sta-

bility is less interesting in that case, since the droplet solutions cannot exist in three bulk

dimensions). Clearly, the construction of such solutions would be of much interest. We

leave this exploration to future work.

Some words on the extremal limit are also in order. Though this limit is discontinuous

from the point of view of the global causal structure of the background geometry, the line

element (3.9) and consequently the stress tensor change smoothly as β approaches βext. In

particular, the stress tensor remains regular on the future horizon, consistent with the result
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of [33] for the four-dimensional RN spacetime. A natural question is then whether there

is some other mechanism that prevents the spacetime from continuing past the Cauchy

horizon, analogous to the mass-inflation singularity of black holes with inner horizons [38];

perhaps the inclusion of perturbative corrections at higher order in 1/N would resolve the

issue.

Indeed, our results may also have implications for the mass-inflation singularity. Ref. [15]

computed the stress tensor on a rotating BTZ black hole background and found that it

diverged at the inner horizon. This result should be expected in any black hole spacetime

with an inner (Cauchy) horizon to preserve the causal structure of the spacetime. Since

the spacetime between the inner and outer horizons is dynamical, the numerical approach

used in this paper would not be applicable to studying the event horizon in that region.

However, obtaining the stress tensor of a field theory on a black hole background all the

way to the inner horizon would certainly give some insight into the behavior of the mass

inflation singularity there.
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A Near-Boundary Expansion for the Nonrotating Droplet

In this appendix, we list the expansions of the metric functions near the conformal bound-

ary x = 1 for the nonrotating (β = 0) droplet, as well as the form of the Fefferman-Graham

expansion (3.16). For the metric functions, we have

T (x, y) = 1 + (1− y)

(
−6(1− x)2 + 6(1 − x)3 +

67− 408y2

14
(1− x)4

)

+ t5(y)(1− x)5 +O(1− x)6, (A.1a)

A(x, y) = 1 + (1− y)

(
−6(1− x)2 + 6(1 − x)3 +

67− 296y2

14
(1− x)4

)

+ a5(y)(1− x)5 +O(1− x)6, (A.1b)

S(x, y) = C(x, y) = 1 + (1− y)

(
2(1− x)2 − 2(1 − x)3 +

5(19 + 8y2)

14
(1− x)4

)

+ s5(y)(1 − x)5 +O(1− x)6, (A.1c)

B(x, y) = 1 +
4

7
(1− y)(5 + y)

(
(1− x)4 − 2(1− x)5

)
+O(1− x)6, (A.1d)

F (x, y) = −(1− y)(1− x)2
[
1 + (1− x) +

211 − 192y

28
(1− x)2 +O(1− x)3

]
, (A.1e)

G(x, y) = 0. (A.1f)
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The coefficients t5(y), a5(y), and s5(y) cannot be determined uniquely, but must satisfy

the relationships

t5(y) =
7(1 − 2y)a5(y)− (1− y)(656y − 960y2 − 14ya′5(y))

7(1 − 2y)
, (A.2a)

s5(y) = −14(1− 2y)a5(y) + (1− y)(8(55 − 265y + 266y2) + 14ya′5(y))

21(1 − 2y)
. (A.2b)

For the transformation to Fefferman-Graham coordinates, we have

1− x2 = z̃
√

1− ỹ

[
1− 1− ỹ2

4
z̃2 +

3(1 − ỹ)2(3 + 6ỹ + 19ỹ2)

224
z̃4 +O(z̃)6

]
, (A.3a)

y = ỹ

[
1 + (1− ỹ)2 z̃2 +

(1− ỹ)3(1− 3ỹ)

2
z̃4

−(1− ỹ)4(4 + 19ỹ − 44ỹ2)

21
z̃6 +O(z̃)7

]
. (A.3b)
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