146 research outputs found

    Dark-state enhanced loading of an optical tweezer array

    Full text link
    Neutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this technique with a 95-tweezer array of 88^{88}Sr atoms, achieving a maximum loading probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is complementary to, and compatible with, existing schemes for enhanced loading based on direct control over light-assisted collisions, and we predict it can enable close-to-unity filling for arrays of atoms or molecules

    PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells

    Get PDF
    Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour

    PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells

    Get PDF
    Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour

    Pharmacokinetics and metabolism of 13-cis-retinoic acid (isotretinoin) in children with high-risk neuroblastoma – a study of the United Kingdom Children's Cancer Study Group

    Get PDF
    The administration of 13-cis-retinoic acid (13-cisRA), following myeloablative therapy improves 3-year event-free survival rates in children with high-risk neuroblastoma. This study aimed to determine the degree of inter-patient pharmacokinetic variation and extent of metabolism in children treated with 13-cisRA. 13-cis-retinoic acid (80 mg m−2 b.d.) was administered orally and plasma concentrations of parent drug and metabolites determined on days 1 and 14 of courses 2, 4 and 6 of treatment. Twenty-eight children were studied. The pharmacokinetics of 13-cisRA were best described by a modified one-compartment, zero-order absorption model combined with lag time. Mean population pharmacokinetic parameters included an apparent clearance of 15.9 l h−1, apparent volume of distribution of 85 l and absorption lag time of 40 min with a large inter-individual variability associated with all parameters (coefficients of variation greater than 50%). Day 1 peak 13-cisRA levels and exposure (AUC) were correlated with method of administration (P<0.02), with 2.44- and 1.95-fold higher parameter values respectively, when 13-cisRA capsules were swallowed as opposed to being opened and the contents mixed with food before administration. Extensive accumulation of 4-oxo-13-cisRA occurred during each course of treatment with plasma concentrations (mean±s.d. 4.67±3.17 μM) higher than those of 13-cisRA (2.83±1.44 μM) in 16 out of 23 patients on day 14 of course 2. Extensive metabolism to 4-oxo-13-cisRA may influence pharmacological activity of 13-cisRA

    The role of deoxycytidine-metabolizing enzymes in the cytotoxicity induced by 3′-amino-2′,3′-dideoxycytidine and cytosine arabinoside

    Full text link
    The cellular metabolism of 3′-amino-2′,3′-dideoxycytidine (3′-NH 2 -dCyd), a cytotoxic agent previously reported to be a poor substrate for purified Cyd/dCyd deaminase (dCydD), was compared with that of cytosine arabinoside (ara-C) in cells that displayed dCydD activity (HeLa) and in cells that did not (L1210). Growth inhibition induced by 3′-NH 2 -dCyd was dependent on the levels of anabolic enzymes, particularly dCyd kinase (dCydK), whereas cytotoxicity induced by ara-C was dependent on the expression of both anabolic and catabolic enzyme activities. Competition kinetics using purified enzyme revealed that the binding affinity of ara-C to dCydK was 5-fold that of the amino analog. However, this binding advantage is apparently offset in cells that contain high levels of dCydD, since the K i values for this enzyme were 0.2 and 23 mm for ara-C and 3′-NH 2 -dCyd, respectively. This was reflected in the decrease in analog sensitivity observed between the two cell lines, whereby the concentrations of ara-C and 3′-NH 2 -dCyd required to inhibit growth by 50% were 200 and 7 times higher, respectively, in the dCydD-containing HeLa cells as compared with the dCydD-deficient L1210 cells. The metabolic stability and cytotoxicity of 3′-NH 2 -dCyd was independent of cell number. An unexpected finding was the extent to which the effectiveness of ara-C could be mitigated by the number of dCydD-containing cells. A completely cytotoxic concentration of ara-C was rendered nontoxic by a 10-fold increase in cell number. This observation was supported by an increase in I-β- d -arabinofuranosyluracil (ara-U) formation, a decrease in ara-C 5′-triphosphate (ara-CTP) accumulation, and a rise in cell viability with increasing cell number. These findings indicate that unlike ara-C, the effectiveness of 3′-NH 2 -dCyd is independent of the level of deaminase, which suggests its possible utility in situations in which high levels of deaminase are manifest.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46922/1/280_2004_Article_BF00686406.pd
    corecore