71 research outputs found

    Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    Get PDF
    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71o domain walls. A smaller amount of 109o domain walls are also present at the boundaries between two adjacent bundles. All as-grown twin walls display enhanced conductivity with respect to the domains during local probe measurements, due to the selective lowering of the Schottky barrier between the film and the AFM tip (see S. Farokhipoor and B. Noheda, Phys. Rev. Lett. 107, 127601 (2011)). In this paper we further discuss these results and show why other conduction mechanisms are discarded. In addition we show the crucial role that oxygen vacancies play in determining the amount of conduction at the walls. This prompts us to propose that the oxygen vacancies migrating to the walls locally lower the Schottky barrier. This mechanism would then be less efficient in non-ferroelastic domain walls where one expects no strain gradients around the walls and thus (assuming that walls are not charged) no driving force for accumulation of defects

    Conduction through 71 degrees DomainWalls in BiFeO3 Thin Films

    Get PDF
    Local conduction at domains and domains walls is investigated in BiFeO3 thin films containing mostly 71o domain walls. Measurements at room temperature reveal conduction through 71o domain walls. Conduction through domains could also be observed at high enough temperatures. It is found that, despite the lower conductivity of the domains, both are governed by the same mechanisms: in the low voltage regime electrons trapped at defect states are temperature-activated but the current is limited by the ferroelectric surface charges; in the large voltage regime, Schottky emission takes place and the role of oxygen vacancies is that of selectively increasing the Fermi energy at the walls and locally reducing the Schottky barrier. This understanding provides the key to engineering conduction paths in oxides.Comment: RevTeX, four two-column pages, 5 color figure

    Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3

    Get PDF
    Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezo-force microscopy, combined with first-principles simulations, have allowed us to characterize both the atomic and domain structure of BFO films grown under compressive strain on (001)-SrTiO3, as a function of thickness. We derive a twining model that describes the experimental observations and explains why the 71o domain walls are the ones commonly observed in these films. This understanding provides us with a new degree of freedom to control the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem to display well. A proper version can be found in the source fil

    Domain wall magnetoresistance in BiFeO₃ thin films measured by scanning probe microscopy

    Get PDF
    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO₃ by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall

    Voltage-driven displacement of magnetic vortex cores

    Get PDF
    Abstract Magnetic vortex cores in polycrystalline Ni discs underwent non-volatile displacements due to voltage-driven ferroelectric domain switching in single-crystal BaTiO3. This behaviour was observed using photoemission electron microscopy to image both the ferromagnetism and ferroelectricity, while varying in-plane sample orientation. The resulting vector maps of disc magnetization match well with micromagnetic simulations, which show that the vortex core is translated by the transit of a ferroelectric domain wall, and thus the inhomogeneous strain with which it is associated. The non-volatility is attributed to pinning inside the discs. Voltage-driven displacement of magnetic vortex cores is novel, and opens the way for studying voltage-driven vortex dynamics.The Royal Society, Gates Cambridge, the Winton Programme for the Physics of Sustainability, Trinity College (Cambridge), Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from the Catalan governmen

    Voltage-driven displacement of magnetic vortex cores

    Get PDF
    Magnetic vortex cores in polycrystalline Ni discs underwent non-volatile displacements due to voltage-driven ferroelectric domain switching in single-crystal BaTiO3. This behaviour was observed using photoemission electron microscopy to image both the ferromagnetism and ferroelectricity, while varying in-plane sample orientation. The resulting vector maps of disc magnetization match well with micromagnetic simulations, which show that the vortex core is translated by the transit of a ferroelectric domain wall, and thus the inhomogeneous strain with which it is associated. The non-volatility is attributed to pinning inside the discs. Voltage-driven displacement of magnetic vortex cores is novel, and opens the way for studying voltage-driven vortex dynamics

    Voltage-driven annihilation and creation of magnetic vortices in Ni discs.

    Get PDF
    Using photoemission electron microscopy (PEEM) to image ferromagnetism in polycrystalline Ni disks, and ferroelectricity in their single-crystal BaTiO3 substrates, we find that voltage-driven 90° ferroelectric domain switching serves to reversibly annihilate each magnetic vortex via uniaxial compressive strain, and that the orientation of the resulting bi-domain reveals the chirality of the annihilated vortex. Micromagnetic simulations reveal that only 60% of this strain is required for annihilation. Voltage control of magnetic vortices is novel, and should be energetically favourable with respect to the use of a magnetic field or an electrical current. In future, stray field from bi-domains could be exploited to read vortex chirality. Given that core polarity can already be read via stray field, our work represents a step towards four-state low-power memory applications.The Royal Society, Gates Cambridge, the Winton Programme for the Physics of Sustainability, Trinity College, Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from the Catalan government for Beatriu de Pinós postdoctoral fellowship (2014 BP-A 00079)

    Patterning enhanced tetragonality in BiFeO3 thin films with effective negative pressure by helium implantation

    Get PDF
    Helium implantation in epitaxial thin films is a way to control the out-of-plane deformation independentlyfrom the in-plane strain controlled by epitaxy. In particular, implantation by means of a helium microscopeallows for local implantation and patterning down to the nanometer resolution, which is of interest for deviceapplications. We present here a study of bismuth ferrite (BiFeO3) films where strain was patterned locally byhelium implantation. Our combined Raman, x-ray diffraction, and transmission electron microscopy (TEM)study shows that the implantation causes an elongation of the BiFeO3unit cell and ultimately a transition towardsthe so-called supertetragonal polymorph via states with mixed phases. In addition, TEM reveals the onset ofamorphization at a threshold dose that does not seem to impede the overall increase in tetragonality. The phasetransition from the R-like to T-like BiFeO3appears as first-order in character, with regions of phase coexistenceand abrupt changes in lattice parameters
    corecore