3 research outputs found

    A novel murine model of late-phase reaction of immediate hypersensitivity

    Get PDF
    We describe here a novel experimental model of late-phase reaction of immediate hypersensitivity developed in mice. It consists of introducing small fragments of heat-coagulated hen egg white into the subcutaneous tissue of mice. After 14 days, animals challenged with purified ovalbumin into the footpad presented an immediate swelling of the paw peaking at 30 min, followed by two peaks of swelling at 6 and 24 h. Histological examination of the paws showed a massive eosinophil infiltration (more than 800 cells/5 microscopic fields). This intense infiltration persisted for more than 14 days after the challenge. Furthermore, in mice immunized with coagulated egg white the delayed swelling of the paws and eosinophilic infiltration were significantly higher than in mice immunized with the classical protocol of ovalbumin in alumen adjuvant. Transfer of lymph node cells obtained from mice implanted with heat-coagulated hen egg white induced footpad swelling and eosinophil infiltration in response to ovalbumin. High levels of ovalbuminspecific IgG1 but not of IgE were detected in the serum of these animals. The advantages of this model for the experimental study of late-phase reaction per se and its relevance to the study of allergic diseases such as asthma are discussed

    Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    Get PDF
    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses
    corecore