2,019 research outputs found
The oxygen isotope effect on critical temperature in superconducting copper oxides
The isotope effect provided a crucial key to the development of the BCS
(Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for
conventional superconductors. In superconducting cooper oxides (cuprates)
showing an unconventional type of superconductivity, the oxygen isotope effect
is very peculiar: the exponential coefficient strongly depends on doping level.
No consensus has been reached so far on the origin of the isotope effect in the
cuprates. Here we show that the oxygen isotope effect in cuprates is in
agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction
Fast atomic transport without vibrational heating
We use the dynamical invariants associated with the Hamiltonian of an atom in
a one dimensional moving trap to inverse engineer the trap motion and perform
fast atomic transport without final vibrational heating. The atom is driven
non-adiabatically through a shortcut to the result of adiabatic, slow trap
motion. For harmonic potentials this only requires designing appropriate trap
trajectories, whereas perfect transport in anharmonic traps may be achieved by
applying an extra field to compensate the forces in the rest frame of the trap.
The results can be extended to atom stopping or launching. The limitations due
to geometrical constraints, energies and accelerations involved are analyzed,
as well as the relation to previous approaches (based on classical trajectories
or "fast-forward" and "bang-bang" methods) which can be integrated in the
invariant-based framework.Comment: 10 pages, 5 figure
Vacuum energy and spectral function sum rules
We reformulate the problem of the cancellation of the ultraviolet
divergencies of the vacuum energy, particularly important at the cosmological
level, in terms of a saturation of spectral function sum rules which leads to a
set of conditions on the spectrum of the fundamental theory. We specialize the
approach to both Minkowski and de Sitter space-times and investigate some
examples.Comment: 11 pages, revtex4, no figures, version to be published on PR
The Equivalence Postulate of Quantum Mechanics
The Equivalence Principle (EP), stating that all physical systems are
connected by a coordinate transformation to the free one with vanishing energy,
univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories
depend on the Planck length through hidden variables which arise as initial
conditions. The formulation has manifest p-q duality, a consequence of the
involutive nature of the Legendre transform and of its recently observed
relation with second-order linear differential equations. This reflects in an
intrinsic psi^D-psi duality between linearly independent solutions of the
Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even
for bound states. No use of any axiomatic interpretation of the wave-function
is made. Tunnelling is a direct consequence of the quantum potential which
differs from the usual one and plays the role of particle's self-energy. The
QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of
the extended real line. This is an important feature as the L^2 condition,
which in the usual formulation is a consequence of the axiomatic interpretation
of the wave-function, directly follows as a basic theorem which only uses the
geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP.
As a result, the EP itself implies a dynamical equation that does not require
any further assumption and reproduces both tunnelling and energy quantization.
Several features of the formulation show how the Copenhagen interpretation
hides the underlying nature of QM. Finally, the non-stationary higher
dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the
action of SL(2,R) subgroups acting on the reduced action explicitly reveals
that the wave-function describes only equivalence classes of Planck length
deterministic physics. New derivation of the Schwarzian derivative from the
cocycle condition. "Legendre brackets" introduced to further make "Legendre
duality" manifest. Introduction now contains examples and provides a short
pedagogical review. Clarifications, conclusions, ackn. and references adde
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft
We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere,
arranged by the angle between electric field vector and the projection of
spacecraft position radius vector in the YZ plane in MSE coordinate system
( E ). All passes were divided into 3 angular sectors near 0{\deg},
90{\deg} and 180{\deg} E angles in order to estimate the role of IMF
direction in plasma and magnetic properties of dayside Martian magnetosphere.
The time interval chosen was from January 17 through February 4, 2016 when
MAVEN was crossing the dayside magnetosphere at SZA ~ 70{\deg}. Magnetosphere
as the region with prevailing energetic planetary ions is always found between
the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction
region in MSE coordinate system with different orientation of the solar wind
electric field vector E = -1/c V x B showed that for each sector one can find
specific profiles of the magnetosheath, the magnetic barrier and the
magnetosphere. Plume ions originate in the northern MSE sector where motion
electric field is directed from the planet. This electric field ejects
magnetospheric ions leading to dilution of magnetospheric heavy ions
population, and this effect is seen in some magnetospheric profiles. Magnetic
barrier forms in front of the magnetosphere, and relative magnetic field
magnitudes in these two domains vary. The average height of the boundary with
ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We
discuss the implications of the observed magnetosphere structure to the
planetary ions loss mechanism.Comment: 24 pages, 13 figure
- …
