2,019 research outputs found

    The oxygen isotope effect on critical temperature in superconducting copper oxides

    Full text link
    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen isotope effect in cuprates is in agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction

    Fast atomic transport without vibrational heating

    Get PDF
    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven non-adiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies and accelerations involved are analyzed, as well as the relation to previous approaches (based on classical trajectories or "fast-forward" and "bang-bang" methods) which can be integrated in the invariant-based framework.Comment: 10 pages, 5 figure

    Vacuum energy and spectral function sum rules

    Full text link
    We reformulate the problem of the cancellation of the ultraviolet divergencies of the vacuum energy, particularly important at the cosmological level, in terms of a saturation of spectral function sum rules which leads to a set of conditions on the spectrum of the fundamental theory. We specialize the approach to both Minkowski and de Sitter space-times and investigate some examples.Comment: 11 pages, revtex4, no figures, version to be published on PR

    The Equivalence Postulate of Quantum Mechanics

    Get PDF
    The Equivalence Principle (EP), stating that all physical systems are connected by a coordinate transformation to the free one with vanishing energy, univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories depend on the Planck length through hidden variables which arise as initial conditions. The formulation has manifest p-q duality, a consequence of the involutive nature of the Legendre transform and of its recently observed relation with second-order linear differential equations. This reflects in an intrinsic psi^D-psi duality between linearly independent solutions of the Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even for bound states. No use of any axiomatic interpretation of the wave-function is made. Tunnelling is a direct consequence of the quantum potential which differs from the usual one and plays the role of particle's self-energy. The QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of the extended real line. This is an important feature as the L^2 condition, which in the usual formulation is a consequence of the axiomatic interpretation of the wave-function, directly follows as a basic theorem which only uses the geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP. As a result, the EP itself implies a dynamical equation that does not require any further assumption and reproduces both tunnelling and energy quantization. Several features of the formulation show how the Copenhagen interpretation hides the underlying nature of QM. Finally, the non-stationary higher dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the action of SL(2,R) subgroups acting on the reduced action explicitly reveals that the wave-function describes only equivalence classes of Planck length deterministic physics. New derivation of the Schwarzian derivative from the cocycle condition. "Legendre brackets" introduced to further make "Legendre duality" manifest. Introduction now contains examples and provides a short pedagogical review. Clarifications, conclusions, ackn. and references adde

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft

    Full text link
    We analyzed 44 passes of the MAVEN spacecraft through the magnetosphere, arranged by the angle between electric field vector and the projection of spacecraft position radius vector in the YZ plane in MSE coordinate system (θ{\theta} E ). All passes were divided into 3 angular sectors near 0{\deg}, 90{\deg} and 180{\deg} θ{\theta} E angles in order to estimate the role of IMF direction in plasma and magnetic properties of dayside Martian magnetosphere. The time interval chosen was from January 17 through February 4, 2016 when MAVEN was crossing the dayside magnetosphere at SZA ~ 70{\deg}. Magnetosphere as the region with prevailing energetic planetary ions is always found between the magnetosheath and the ionosphere. 3 angular sectors of dayside interaction region in MSE coordinate system with different orientation of the solar wind electric field vector E = -1/c V x B showed that for each sector one can find specific profiles of the magnetosheath, the magnetic barrier and the magnetosphere. Plume ions originate in the northern MSE sector where motion electric field is directed from the planet. This electric field ejects magnetospheric ions leading to dilution of magnetospheric heavy ions population, and this effect is seen in some magnetospheric profiles. Magnetic barrier forms in front of the magnetosphere, and relative magnetic field magnitudes in these two domains vary. The average height of the boundary with ionosphere is ~530 km and the average height of the magnetopause is ~730 km. We discuss the implications of the observed magnetosphere structure to the planetary ions loss mechanism.Comment: 24 pages, 13 figure
    corecore