16,980 research outputs found

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Stochastic dynamics of adhesion clusters under shared constant force and with rebinding

    Full text link
    Single receptor-ligand bonds have finite lifetimes, so that biological systems can dynamically react to changes in their environment. In cell adhesion, adhesion bonds usually act cooperatively in adhesion clusters. Outside the cellular context, adhesion clusters can be probed quantitatively by attaching receptors and ligands to opposing surfaces. Here we present a detailed theoretical analysis of the stochastic dynamics of a cluster of parallel bonds under shared constant loading and with rebinding. Analytical solutions for the appropriate one-step master equation are presented for special cases, while the general case is treated with exact stochastic simulations. If the completely dissociated state is modeled as an absorbing boundary, mean cluster lifetime is finite and can be calculated exactly. We also present a detailed analysis of fluctuation effects and discuss various approximations to the full stochastic description.Comment: Revtex, 29 pages, 23 postscript figures included (some with reduced image quality

    Phase Separation Dynamics Induced by an Interaction Quench of a Correlated Fermi-Fermi Mixture in a Double Well

    Get PDF
    We explore the interspecies interaction quench dynamics of ultracold spin-polarized few-body mass balanced Fermi-Fermi mixtures confined in a double-well with an emphasis on the beyond Hartree-Fock correlation effects. It is shown that the ground state of particle imbalanced mixtures exhibits a symmetry breaking of the single-particle density for strong interactions in the Hartree-Fock limit, which is altered within the many-body approach. Quenching the interspecies repulsion towards the strongly interacting regime the two species phase separate within the Hartree-Fock approximation while remaining miscible in the many-body treatment. Despite their miscible character on the one-body level the two species are found to be strongly correlated and exhibit a phase separation on the two-body level that suggests the anti-ferromagnetic like behavior of the few-body mixture. For particle balanced mixtures we show that an intrawell fragmentation (filamentation) of the density occurs both for the ground state as well as upon quenching from weak to strong interactions, a result that is exclusively caused by the presence of strong correlations. Inspecting the two-body correlations a phase separation of the two species is unveiled being a precursor towards an anti-ferromagnetic state. Finally, we simulate in-situ single-shot measurements and showcase how our findings can be retrieved by averaging over a sample of single-shot images.Comment: 15 pages, 9 figure

    Universal deformation rings of modules for algebras of dihedral type of polynomial growth

    Full text link
    Let k be an algebraically closed field, and let \Lambda\ be an algebra of dihedral type of polynomial growth as classified by Erdmann and Skowro\'{n}ski. We describe all finitely generated \Lambda-modules V whose stable endomorphism rings are isomorphic to k and determine their universal deformation rings R(\Lambda,V). We prove that only three isomorphism types occur for R(\Lambda,V): k, k[[t]]/(t^2) and k[[t]].Comment: 11 pages, 2 figure

    Noise-Induced Transition from Translational to Rotational Motion of Swarms

    Full text link
    We consider a model of active Brownian agents interacting via a harmonic attractive potential in a two-dimensional system in the presence of noise. By numerical simulations, we show that this model possesses a noise-induced transition characterized by the breakdown of translational motion and the onset of swarm rotation as the noise intensity is increased. Statistical properties of swarm dynamics in the weak noise limit are further analytically investigated.Comment: 7 pages, 7 figure

    Building CMS Pixel Barrel Detectur Modules

    Get PDF
    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200
    corecore