Let k be an algebraically closed field, and let \Lambda\ be an algebra of
dihedral type of polynomial growth as classified by Erdmann and Skowro\'{n}ski.
We describe all finitely generated \Lambda-modules V whose stable endomorphism
rings are isomorphic to k and determine their universal deformation rings
R(\Lambda,V). We prove that only three isomorphism types occur for
R(\Lambda,V): k, k[[t]]/(t^2) and k[[t]].Comment: 11 pages, 2 figure