983 research outputs found

    Epididymal contribution to male infertility: An overlooked problem

    Get PDF
    The diagnosis and treatment of male infertility, excluding assisted conception, are limited because of, but not limited to, poor understanding of sperm post-testicular development and storage. Many may think that sperm dysfunction is only self-contained in the sperm cell itself as a result of defective spermatogenesis. However, it can also be a consequence of inadequate epididymal maturation following disorders of the epididymis. Improper epididymal functions can disturb semen parameters and sperm DNA integrity, result in high leucocyte concentrations and high numbers of immature germ cells and debris or even cause idiopathic infertility. To date, the data are limited regarding critical markers of sperm maturation and studies that can identify such markers for diagnosis and managing epididymal dysfunction are scarce. Therefore, this article aims to draw attention to recognise a disturbed epididymal environment as a potential cause of male infertility

    RNAiAtlas: a database for RNAi (siRNA) libraries and their specificity

    Get PDF
    Large-scale RNA interference (RNAi) experiments, especially the ones based on short-interfering RNA (siRNA) technology became increasingly popular over the past years. For such knock-down/screening purposes, different companies offer sets of oligos/reagents targeting the whole genome or a subset of it for various organisms. Obviously, the sequence (and structure) of the corresponding oligos is a key factor in obtaining reliable results in these large-scale studies and the companies use a variety of (often not fully public) algorithms to design them. Nevertheless, as the genome annotations are still continuously changing, oligos may become obsolete, so siRNA reagents should be periodically re-annotated according to the latest version of the sequence database (which of course has serious consequences also on the interpretation of the screening results). In our article, we would like to introduce a new software/database tool, the RNAiAtlas. It has been created for exploration, analysis and distribution of large scale RNAi libraries (currently limited to the human genome) with their latest annotation (including former history) but in addition it contains also specific on-target analysis results (design quality, side effects, off-targets)

    A nosocomial transmission of crimean-congo hemorrhagic fever to an attending physician in north kordufan, Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crimean-Congo hemorrhagic fever (CCHF), a tick-borne disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is a member of the genus Nairovirus in the family Bunyaviridae. Recently, CCHFV has been reported as an important emerging infectious viral pathogen in Sudan. Sporadic cases and multiple CCHF outbreaks, associated with nosocomial chain of transmission, have been reported in the Kordufan region of Sudan.</p> <p>Aims</p> <p>To confirm CCHF in an index patient and attending physician in North Kordufan region, Sudan, and to provide some information on virus genetic lineages.</p> <p>Methods</p> <p>Antibody captured ELISA, reverse transcription PCR, partial S segment sequences of the virus and subsequent phylogenetic analysis were used to confirm the CCHFV infection and to determine the virus genetic lineages.</p> <p>Results</p> <p>CCHF was confirmed by monitoring specific IgM antibody and by detection of the viral genome using RT-PCR. Treatment with oral ribavirin, replacement with fluid therapy, blood transfusion and administration of platelets concentrate resulted in rapid improvement of the health condition of the female physician. Phylogenetic analysis of the partial S segment sequences of the 2 CCHFV indicates that both strains are identical and belong to Group III virus lineage, which includes viruses from Africa including, Sudan, Mauritania, South Africa and Nigeria.</p> <p>Conclusion</p> <p>Further epidemiologic studies including, CCHFV complete genome analysis and implementation of improved surveillance are urgently needed to better predict and respond to CCHF outbreaks in the Kordufan region, Sudan.</p

    RNAi technology and its use in studying the function of nuclear receptors and coregulators

    Get PDF
    Until just a few years ago, RNA interference (RNAi) technology was restricted to the research fields of plants, C. elegans or Drosophila. The discovery of gene silencing by in vitro synthesized double-stranded RNA (dsRNA) in mammalian cells has made the use of RNAi possible in nearly the entire life science kingdom. DNA vectors delivering small interfering RNA (siRNA) directed by polymerase III or polymerase II promoters to persistently inhibit target genes expression have extended this technology to study in vivo function of these genes. Recently, RNAi has been used as a powerful tool in the functional analysis of nuclear receptors and their coregulators. This short review will cover studies in this area

    High potency silencing by single-stranded boranophosphate siRNA

    Get PDF
    In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and research applications, its overall poor activity compared with ds-siRNA has prevented its widespread use. In contrast to the poor gene silencing activity of native ss-siRNA, we found that the silencing activity of boranophosphate-modified ss-siRNA is comparable with that of unmodified ds-siRNA. Boranophosphate ss-siRNA has excellent maximum silencing activity and is highly effective at low concentrations. The silencing activity of boranophosphate ss-siRNA is also durable, with significant silencing up to 1 week after transfection. Thus, we have demonstrated that boranophosphate-modified ss-siRNA can silence gene expression as well as native ds-siRNA, suggesting that boranophosphate-modified ss-siRNAs should be investigated as a potential new class of therapeutic agents

    Hidden reach of the micromanagers

    Get PDF
    Small interfering RNAs can trigger unintended, microRNA-like off-target effects, but the impact of these effects on functional studies has been controversial. A recent study in BMC Genomics shows that microRNA-like effects can predominate among the 'hits' of functional genomics screens

    siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos

    Get PDF
    Short interference RNA (siRNA) is widely used in mammalian cells. In insects, however, reports concerning the suitablility of siRNA in vivo is very limited compared with that of long dsRNA, which is thought to be more effective. There is insufficient information on the essential rules of siRNA design in insects, as very few siRNAs have been tested in this context. To establish an effective method of gene silencing using siRNA in vivo in insects, we determined the effects of siRNA on seven target genes. We designed siRNAs according to a new guideline and injected them into eggs of Bombyx mori. At the mRNA level, the expression of most of these genes was successfully silenced, down to less than half the constitutive level, which in some cases led to the development of distinctive phenotypes. In addition, we observed stronger effect of siRNA both on the mRNA level and the phenotype than that of long dsRNA under comparable conditions. These results indicate that direct injection of siRNA is an effective reverse-genetics tool for the analysis of embryogenesis in vivo in insects
    corecore