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Abstract 21 

Conventional gasoline comprises of a large number of hydrocarbons that makes it difficult to utilize in a 22 

model for prediction of its properties. Modeling is needed for a better understanding of the fuel flow and 23 

combustion behavior that are essential to enhance fuel quality and improve engine performance. A 24 

simplified alternative is to develop surrogate fuels that have fewer compounds and emulate certain 25 

important desired physical properties of the target fuels. Six gasoline blends were formulated through a 26 

computer aided model based technique “Mixed Integer Non-Linear Programming” (MINLP). Different 27 

target properties of the surrogate blends for example, Reid vapor pressure (RVP), dynamic viscosity (η), 28 

density (ρ), Research octane number (RON) and liquid-liquid miscibility of the surrogate blends) were 29 

calculated. In this study, more rigorous property models in a computer aided tool called Virtual Process-30 

Product Design Laboratory (VPPD-Lab) are applied onto the defined compositions of the surrogate 31 

gasoline. The aim is to primarily verify the defined composition of gasoline by means of VPPD-Lab. ρ, η 32 

and RVP are calculated with more accuracy and constraints such as distillation curve and flash point on 33 

the blend design are also considered. A post-design experiment-based verification step is proposed to 34 

further improve and fine-tune the “best” selected gasoline blends following the computation work. Here, 35 

advanced experimental techniques are used to measure the RVP, ρ, η, RON and distillation temperatures. 36 

The experimental results are compared with the model predictions as well as the extended calculations in 37 

VPPD-Lab.  38 

39 
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1. Introduction 1 

Fuels such as conventional gasoline are complex mixtures of hundreds of hydrocarbons that frequently 2 

vary with time and location (Pitz and Mueller, 2011). This complexity makes it extremely difficult to 3 

study underlying fundamental processes such as combustion, emission and other physical properties of 4 

fuels. Currently, it is not possible to model conventional gasoline through a detailed kinetic model since 5 

the kinetics and interactions of all the compounds present in conventional gasolines are not fully 6 

understood (Mueller et al., 2012). As a result, a favorable approach to overcoming these problems is the 7 

use of surrogate fuels that represent their conventional counterparts but are comprised of a smaller 8 

number of organic compounds. In general, a surrogate fuel is one that is composed of a small and diverse 9 

number of organic compounds that mimic certain target characteristics of the original fuel (Pitz et al. 10 

2007). Since simulations are frequently performed during modern engine testing and fuel combustion, the 11 

simpler composition of the surrogate fuels allow for more efficient simulations (Reiter et al., 2015). 12 

Surrogate fuels not only provide a better understanding of the effects of the composition on different 13 

desired/undesired properties but also have value as time-invariant reference fuels for experimental 14 

studies. 15 

There are several published articles on the generation of surrogate fuels for gasoline (Mueller et al., 2012; 16 

Mehl et al., 2011), diesel (Pitz et al., 2007) and jet fuel (Elmalik et al., 2014). Mehl et al. (2011) proposed 17 

a liquid blend of n-heptane, iso-octane, toluene and 2-pentene in an attempt to match the physical and 18 

chemical properties of real non-oxygenated gasoline. They also proposed a simplified kinetic mechanism 19 

of fuel combustion in an engine with this four component surrogate fuel, without compromising ignition 20 

delay times and flame speeds for a broad range of operating conditions.  21 

 22 

In addition to time-invariant reference fuels, surrogates can also be used directly as synthetic fuels. 23 

However, to enhance the surrogate’s physicochemical properties and reduce consumption, other chemical 24 

additives are required. Numerous studies have been performed to identify additives for gasoline (Canakci 25 

et al. 2013; Masum et al. 2015; Rodríguez-Antón et al. 2015). Canakci et al. (2013) and Masum et al. 26 

(2015) investigated the effects of alcohol blended with gasoline on the exhaust emission of a Spark 27 

Ignition (SI) engine. While these studies provided useful knowledge, they were mostly empirical in nature 28 

and the application of computational model-based methodologies are now being employed to 29 

design/improve products, enabling them to reach the market faster by reducing expensive and time-30 

consuming experiments (Gani, 2004). In this respect, Conte et al. (2011) proposed a systematic computer 31 

aided model-based approach for liquid formulated products such as liquid insect repellents and sun-screen 32 

lotion. Yunus et al. (2014) adapted this approach to design blended products such as gasoline, diesel and 33 

lubricant blends.  34 

According to the method of Yunus et al. (2014), for gasoline or diesel blends, first the main ingredient 35 

(MI) comprising of hydrocarbon building blocks that are representative of the corresponding fuel, are 36 

identified. In the next steps, additives are identified and blended with MI to enhance the quality of the 37 

surrogate fuel. The blends are formulated based on target properties such as Reid vapor pressure (RVP), 38 

flash point (Tf), dynamic viscosity (η), density (ρ), research octane number (RON), heating value (HHV), 39 

toxicity (LC50), oxygen content (����) and liquid blend miscibility of the surrogate blends. These 40 

targeted properties need to be matched to identify the surrogate fuel representing a desired gasoline blend 41 

as they represent various aspects of the fuel such as its ability to be burned, its engine efficiency, and its 42 

environmental impact. 43 
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In another recent study, Luning Park et al. (2015) report the formulation and development of alcohols-to-1 

jet (ATJ) surrogate fuels. They used the physicochemical properties and chemical composition of a 2 

conventional jet-fuel to design a surrogate fuel that is comprised of 30 (vol%) of additives and 70 (vol%) 3 

petroleum JP-5. Several surrogate fuels were prepared to investigate physicochemical properties of the 4 

jet-fuel blend. Further, a combustion study was also carried out to investigate the engine performance 5 

with the surrogate fuel.  6 

While the experiment based method proposed by Luning Prak et al. (2015) could lead to surrogate fuels 7 

with validated target properties, the model-based computer-aided method of Yunus et al. (2014) is able to 8 

very quickly search over a wide range of solutions to identify a set of promising blends. Combining this 9 

approach with an experiment based approach, it is possible to quickly identify first, a small set of 10 

promising alternatives, then, through experiments to subsequently verify and fine-tune them to determine 11 

the optimal fuel-blend product. Thus, precious experimental resources are used only for focused 12 

experiments to validate and improve the blended product, and not wasted on a blind trial-and-error search.   13 

The current study is focused on the experimental verification of the physicochemical properties of the 14 

gasoline blends proposed by Yunus et al. (2014), and, based on the measured properties to further fine-15 

tune and improve the blends. Also, the model-based framework is extended with an improved set of 16 

property models. This paper is organized as follows: in Section 2, Surrogate composition prediction via 17 

VPPD-lab is described. In Section 3, the methods needed to prepare the surrogate fuels and 18 

experimentally verify their composition and physicochemical properties are described. In Section 4, the 19 

compositional verification is discussed, followed by a comparison of the experimental results of RON, 20 

RVP, η and ρ with the VPPD-Lab-predicted values to evaluate the effectiveness of the model used, to 21 

improve its predictability and to fine-tune the surrogate fuel compositions. 22 

2 Blend composition prediction via VPPD-Lab   23 

Recent efforts have investigated the integration of model-based methodologies into a computer-aided 24 

framework as a chemical product design and evaluation software called the Virtual Process-Product 25 

Design Laboratory (VPPD-Lab) (Kalakul et al., 2015). VPPD-Lab allows users to; (1) analyze chemical-26 

based products by performing virtual experiments (product property and performance calculations); (2) 27 

predict the properties of products; and (3) create new product property and product performance models 28 

when needed. However, unlike process simulators, VPPD-Lab can also be used directly for (4) design of 29 

chemicals based products using design templates for various types of products, such as single molecule 30 

products, formulations, blends, emulsions and devices; and, (5) to create new product design templates 31 

when the needed template for the desired product is not available. VPPD-Lab employs a suite of 32 

algorithms (such as database search, molecular and mixture blend design) and tool boxes (such as 33 

property calculations and property model consistency tests) for specific product property prediction, 34 

design, and/or analysis tasks. Within VPPD-Lab, the extended methodology of Yunus et al. (2014) has 35 

been implemented so that many blended chemical products can be designed and evaluated in terms of 36 

their target properties. The property models used for the design and evaluation of gasoline blends are 37 

given in Appendix. 38 

Conventional gasoline is comprised of a vast number of hydrocarbons, and for a better understanding of 39 

fuel behavior in the combustion engine, a set of properties need to be analyzed. In this section, the five 40 

gasoline surrogates plus a conventional gasoline (main ingredient) reported by Yunus et al. (2014) are 41 

first evaluated using the extended property model library of VPPD-Lab. The five surrogates are obtained 42 

by blending the main ingredient (MI), which represents the conventional gasoline, with additives to obtain 43 

tailor-made gasoline blends (surrogate fuels) that have properties better than the MI. The five gasoline 44 
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blends should have better fuel performance and meet or exceed stringent requirements for worldwide fuel 1 

handling and gasoline standards as listed in Table 1.   2 

 3 

Table 1: Gasoline needs to be translated target properties 4 

Need Target Property  Target Value 
Ability to be burned Reid vapor pressure (kPa ) 45 ≤ RVP ≤ 60 
Flammability Flash point (∘C) Tf ≤ 27 
Engine efficiency Higher heating value (MJ/kg) 

Density at 15 ∘C (g/cm3) 
RON 

HHV ≥ 35 
0.720 ≤ ρ ≤ 0.775 
RON ≥ 92 

Consistency of fuel flow Dynamic viscosity at 20 ∘C (cP)  0.30 ≤ η ≤ 0.60 
Liquid blend miscibility Gibbs energy of mixing (Conte et al., 2011) Trend of ∆��	
/� 
Environmental impacts Oxygen content (wt %) 

-logLC50 (mol/L ) 
2 ≤ Wto2 ≤ 20 
-log(LC50) < 3.08 

 5 

Six chemicals are selected to represent the main ingredient (MI) with the composition given in Table 2. 6 

As additives, 22 bio-based organic chemicals from which two are chosen for tailor-made gasoline blends 7 

are considered. The blend design problem is formulated as a Mixed Integer Non-Linear Programming 8 

(MINLP) problem, where the fuel composition is to be optimized subject to target properties. The identity 9 

of the additives are represented by binary integer variables (zero or one) while the compositions of the MI 10 

and the additives are the real variables (zero to hundred). The five most promising ternary blends (two 11 

additive chemicals and MI) with the minimum conventional gasoline (MI) composition are listed in Table 12 

3 with the predicted target properties values from Yunus et al. (2014). 13 

 14 

Table 2: Gasoline surrogate MI composition 15 

Chemical Composition (vol %) 
Butane 6.58 

n-Heptane 12.6 

Iso-octane 53.99 

1-Pentene 3.63 

Methylcyclopentane 8.47 

Toluene 14.73 

 16 

Table 3: Gasoline blend candidates with their composition and properties 17 

ID Composition (vol %) 
RVP 

(kPa ) 

HHV 

(MJ/kg) 

ηηηη 

(cP) 

Wto2 

(wt%) 

-logLC50 

(mol/L ) 

RON 

Blend 1 MI(69) THF(11) MeTHF(20) 46 41 0.48 7.2 2.7 - 

Blend 2 MI(67) ACE(13) MeTHF (20) 46 41 0.47 7.8 2.7 - 

Blend 3 MI(72) ACE(10) 2BE(18) 49 40 0.48 7.3 2.7 - 

Blend 4 MI(75) 2BE(13) MeTHF (12) 45 43 0.50 5.5 2.9 - 

Blend 5 MI(77) EtOH(12) MeTHF (11) 45 42 0.57 6.7  2.8 96 

THF: Tetrahydrofuran; MeTHF: Methyl tetrahydrofuran; ACE: Acetone; 2BE: 2-Butanone; EtOH: Ethanol 

 18 
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An important issue when using model-based techniques and especially property models, is the question of 1 

the accuracy and reliability of the predictions. Therefore, to verify the results of Yunus et al. ( 2014), the 2 

chemicals database and extended predictive models library of VPPD-Lab are used. The properties of 3 

interest and their corresponding models are retrieved from the property model library in VPPD-Lab. One 4 

such property [not considered by Yunus et al.(2014)] is the distillation profile, which is a set of increasing 5 

temperatures at which the fuel evaporates for a fixed series of increasing volume percentages (10 percent 6 

(T10), 50 percent (T50) and 90 percent (T90)). In this study, the distillation profile is calculated using the 7 

method of Hoffman (Hoffman, 1969) together with the property models in VPPD-Lab. The pure 8 

component properties are obtained from the experimental data if they are available or estimated using the 9 

models listed in Table 4. The target mixture property models are given in Table 5. The calculated results 10 

are given in Table 6 (in Section 4.2).   11 

 12 

Table 4: Pure component properties models 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

Table 5: Mixture 24 property models 

 25 

The linear mixing rule as shown in Eq. 1 is employed as the first estimate for mixture properties known to 26 

have a linear composition dependence: 27 

 

Pure component property Model 

Higher heating value (���	) (Yunus et al., 2014) 

Density (ρ�) 
PC-SAFT (Gross and Sadowski, 

2001) 

Vapor pressure (�	���) 
PC-SAFT (Gross and Sadowski, 

2001) 

Open cup flash point (�	) (Hukkerikar et al., 2012a) 

Lethal concentration (log��50	) (Hukkerikar et al., 2012b) 

  

Dynamic viscosity (η�) (Nielsen et al., 2001) 

Research Octane number, �!"	 (Nielsen et al., 2001) 

Target mixture  property Model  

Higher Heating Value, HHV Linear mixing rule Eq.1 

Density at 15 ∘C, ρ Linear mixing rule Eq.1 

Reid Vapor Pressure, RVP Modified Raoult’s law Eq.2 

Open cup flash point, Tf Liaw, Gerbaud, and Li (2011) Eq.3 

Toxicity parameter, -log(LC50) Linear mixing rule Eq.1 

ASTM distillation temperature 
(T10, T50 and T90) 

Hoffman (1969) - 

Research Octane number, RON Linear mixing rule Eq.1 

Dynamic viscosity at 20 ∘C, η Linear mixing rule (Cao et al., 2017; 
Yunus et al. 2014)  

Eq.1/Eq. 4-11 
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# =  % &'
(

1
#'                                                                                        (1) 

 1 

where, &	 is the mole fraction of compound i and #	 is pure compound property of compound i. This 2 

model gives a good prediction for mixtures that have negligible excess properties of mixing (ideal 3 

mixtures). For non-ideal mixtures, the estimated properties need to be verified using rigorous models 4 

since their excess properties of mixing need to be considered.  5 

RVP (Reid Vapor Pressure) of a blend is a function of mole fraction ( &	), liquid activity coefficient (γi) 6 

and saturated vapor pressure (Pi) as shown in Eq. 2: 7 

��� =  % &	+	�	���
,

	-.
                                                                           (2) 

Flash point is defined as the lowest temperature at which the vapor above a liquid can be ignited in air. 8 

The flash point of a blend is determined using Eq. 3. It is the function of mole fraction (&	), liquid activity 9 

coefficient (γi), the saturated vapor pressure at temperature T (�	���) and the vapor pressure of pure 10 

compounds at their flash point (�	,12
���). Note that the liquid activity coefficient is predicted with the well-11 

known UNIFAC group contribution method with fine-tuned interaction parameters Kalakul et al. (2017)  12 

 13 

% &	+	�	���()
�	,12

���

,

	-.
= 1                                                                          (3) 

In this work, Linear mixing rule for density and viscosity calculations provides a good initial estimation 14 

for the blends. However, the rigorous viscosity model obtained from Cao et al. (1993) issued to correct 15 

the composition with the viscosity recalculated with the non-linear model as shown in Eq. 4 - 11: 16 

4((5�) = % 6	4((5	�	)
78

	
+ 2 % 6	4( :&	

6	
;

78

	
− % :=	(>	6	

?	
;

78

	
% @A	4(BCA	D
78

A
                        (4)     

V = % &	�G
78

	
                                                                                               (5) 

?	 = % HG,	�G
78

	
                                                                                            (6) 

=	 = % HG,	JG
78

	
                                                                                           (7) 

C	A = L&> M− N�,
 O                                                                                    (8)     

  6	 = &	?	
∑ &A?A78A

                                                                                              (9)     
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@A	 = @ACA	
∑ @SCS	78S

                                                                                             (10) 

 1 

 @A = &A=A
∑ &	=	78	

                                                                                              (11) 

where 5 is the mixture viscosity, V is the mixture volume that can be calculated. Vi (cm3/mol) and  5	 are 2 

pure compound molar volume and viscosity. HG,	, �G and JG are group parameters obtained from 3 

Magnussen et al. (1981). C	A is calculated from the group interaction parameters N�,.  6 is volume 4 

fraction. @A	 is parameter. @A is surface fraction. 5 

3 Verification by experimental techniques 6 

3.1 Materials 7 

In this study, the chemicals used in preparation of five gasoline blends are n-butane, n-heptane, iso-8 

octane, 1-pentene, methylcyclopentane (MeCP), toluene, tetrahydrofuran (THF), 2-methyl 9 

tetrahydrofuran (MeTHF), acetone (ACE), 2-butanone (2BE) and ethanol (ETOH). All the chemicals are 10 

procured from Sigma-Aldrich and have a purity of ≥99%. The blending procedure is carried out following 11 

the compositions provided in Table 2 and Table 3 in Section 2. 12 

 13 

3.2 Blend preparation and sampling technique  14 

For any gasoline grade, the octane number is fixed throughout the year, but RVP varies according to the 15 

climate condition. In industry, butane is added to gasoline to improve the RVP of the fuel and the 16 

concentration of butane is increased as the cooler weather sets in. Butane is an inexpensive gas and its 17 

presence in fuel can cause significant improvement in the RVP of the fuel due to its higher vapor pressure 18 

of 244 kPa. A regular summer gasoline contains approximately 2% butane (Pugliaresi, 2015). However, 19 

butane cannot be directly added to the storage tank, as the tank is not designed for the preparation of the 20 

gasoline-butane mixture. Industries use special techniques for the blending of butane on a large scale 21 

(Technics, 2012).  22 

The gasoline blends formulated in this study have a high n-butane concentration (approximately 5%). N-23 

Butane, having a very high vapor pressure of 244 kPa at 25 oC, has the tendency to escape on exposure to 24 

ambient conditions. Moreover, 1-pentene, which also has a high vapor pressure of 80.4 kPa at 25 oC, is 25 

highly volatile in nature. Therefore, the blend composition is prone to change on its exposure to ambient 26 

conditions due to the escaping nature of both n-butane and 1-pentene. The conventional blending and 27 

sampling techniques, as well as testing methods, were found to be insufficient for the highly volatile 28 

mixtures used in this study. Therefore, to minimize changes in the composition of the gasoline blends, an 29 

advanced blending technique and a unique sampling methodology was developed. Figs.1&2 shows the 30 

different stages of blend preparation technique and the sampling device used in this study. The detailed 31 

description of blend preparation technique and sampling protocol is provided in the supplementary 32 

documents. The techniques developed herein are paramount because it allowed us to prepare a blend with 33 

a composition comparable to the formulation predicted by the model. 34 
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 1 

Figure 1: Blend Preparation 2 

Key 

Red color circles Butane gas molecules 

Red color Gasoline mixture (liquids) 

Green color circles Helium gas molecules  

 3 

  4 
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 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Figure. 2 : Sampling device: (1)TWV 1; (2)TWV 2; (3) 300 ml double ended gas cylinder; (4) Sample 17 

injection; (5) Helium gas pressure applied; (6) Pressure gauge (PG); (7) SS316 tube of OD 1/4”;  (8) 18 

Sample withdrawing in syringe 19 

3.3 Properties testing methods 20 

To experimentally test the gasoline blends, the following properties - Reid vapor pressure (RVP), density 21 

(ρ), dynamic viscosity (η), distillation temperatures (T10, T50, T90), research octane number (RON) and 22 

composition characteristics – are measured using different equipment and standards. RVP for the blends is 23 

determined using Equipment MiniVapXpert by the manufacturer Grabner Instruments according to 24 

ASTM D323. Density (ρ) and dynamic viscosity (η) for all the blends are measured using a Stabinger 25 

viscometer by Anton Paar according to ASTM 7042. Composition characteristics, distillation 26 

temperatures, and RON are measured by the Gas Chromatography-Detailed Hydrocarbon Analysis (GC-27 

DHA) technique using equipment Perkin-Elmer Clarus-500 according to ASTM D6730.  28 

For GC-DHA technique, the sample is injected into a gas chromatograph which comprises of an open 29 

tubular (capillary) column coated with a methyl silicone liquid phase, modified with a capillary pre-30 

column. The vaporized sample gets transported through the column by helium carrier gas. In the column, 31 

it gets partitioned into individual components, which after they elute from the end of the column, are 32 

detected by the flame ionization detector (FID). Analyzing reference standards or samples are used to 33 

identify each eluting component by comparison of their retention time under identical conditions. This 34 

6 

1 3 

5 
4 

8 

2 

7 
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process helps in determining the concentration of each component in wt % after correction with detector 1 

response factors and normalization of the peak areas. 2 

Usually, the boiling range characteristics through distillation are determined experimentally using ASTM 3 

D86. However, in this study the distillation curve is not determined using ASTM D86 for any of the 4 

blends due to safety concerns associated, owing to the presence of n-butane in the blends. Consequently, 5 

distillation temperatures are determined by GC-DHA technique for all the blends. The GC-DHA 6 

technique uses simulated distillation (SD) by a gas chromatography (GC) in which hydrocarbon 7 

components of the sample are eluted in order of increasing boiling points in a nonpolar capillary column 8 

(methyl silicone phase) as described elsewhere (Petroff et al., 1987). Petroff et al. (1987) compared the 9 

SD method for determining boiling temperatures with true boiling point (TBP) distillation via ASTM 10 

D86-78/ASTM D1160-77. Petroff et al. (1987) showed that the boiling point ranges derived from this SD 11 

technique are roughly comparable to TBP value, and therefore should only be used as an approximation 12 

of the distillation profile for the blends. 13 

RON value is also experimentally determined by GC-DHA technique using the following relationship: 14 

�!" = %(N	T	
,

	-.
)                                                                          (12) 

 15 

where, ci is the composition of component i and ai is octane number of the compound i. 16 

The octane number of each compound is already present in the in-built library supplied with the 17 

equipment, and the composition is determined by normalization of the peak areas after correction with 18 

detector response factor. Eq. 12 inevitably exhibits linear combination of the octane number and the 19 

composition of each compound. However, the octane number of the blend is not a linearly mixed property 20 

as interactions are present between the different chemicals (oxygenates, paraffins, aromatics, naphthenes 21 

and olefins) (Lugo et al. 1999). Therefore, RON values reported in this study needs further investigation 22 

through ASTM D2699. 23 

Nevertheless, RON determination done using GC-DHA technique is an excellent method for 24 

approximation only. Octane number calculation using the linear mixing rule and ASTM method reported 25 

by Lugo et al. (1999) indicates a difference of ± 2.8 RON. 26 

HHV is generally measured using ASTM D240 for liquid hydrocarbon fuels using a bomb calorimeter. In 27 

this study, HHV is not measured owing to the highly volatile nature of the gasoline surrogate blends and 28 

determination of HHV of the volatile blends creates a safety concern.   29 

 30 

4 Results and discussion 31 

4.1. Composition analysis by GC DHA 32 

In this section, the concentration of each compound present in the blends as obtained by GC-DHA study 33 

according to ASTM D6730-01 is compared with the prepared blend concentration. Since the composition 34 

of all the blends is already known, the primary purpose of carrying out GC-DHA is to confirm that no 35 

alteration in composition occurs due to unknown chemical reaction or evaporation of volatile compounds 36 

like 1-Pentene and n-butane. Moreover, GC-DHA also helps in confirming the miscibility of the mixtures, 37 

which is a constraint, added in the computer-aided method. All the chromatograms and composition data 38 
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from the GC-DHA analysis can be found in supplementary material provided with this paper (Fig. S1 –S6 1 

& Table S1-S6 ).   2 

The variation of blended composition from the composition determined using GC-DHA technique is 3 

presented in terms of Relative Standard Deviation (RSD) as shown in Table 6. RSD is a standardized 4 

measure of variation in data that is given by the ratio of standard deviation (σ) and the mean (µ). RSD is 5 

expressed in percentage and can be calculated by Eq. 13: 6 

�UV = W/X × 100                                                                                              (13) 7 

RSD values in Table 6 did not exceed 6.24% for any of the components in all the blends, which suggests 8 

that the prepared blend compositions did not change significantly from the predetermined composition. 9 

Moreover, the small RSD values also indicate that the fuel blend candidates are miscible. Relatively 10 

larger RSD values for 1-pentene and n-butane in comparison with other blend chemicals are observed due 11 

to the high volatility nature of 1-pentene and n-butane, which renders subtle losses during sampling. 12 

Moreover, the blends are prepared with an accuracy of ±2%, and there is a possibility that this might have 13 

also contributed to the difference. The small deviations in results of blend compositions as denoted by 14 

their RSD values confirm the efficacy of the stability algorithm, blend preparation and sampling 15 

techniques used in this study. 16 

 17 
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Table 6: Composition verification of all blends using DHA 

 MI Blend 1 Blend2 Blend3 Blend4 Blend5 

X 
(wt%) 

Y 
(wt%) 

RSD  
(%) 

X 
(wt%) 

Y 
(wt%) 

RSD  
(%) 

X 
(wt%) 

Y 
(wt%) 

RSD 
(%) 

X 
(wt%) 

Y 
(wt%) 

RSD 
(%) 

X 
(wtl%

) 

Y 
(wt%) 

RSD  
(%) 

X 
(wt%) 

Y 
(wt%) 

RSD 
(%) 

n-butane 6.58 6.06 5.82 4.24 3.94 5.19 4.17 4.00 2.94 4.57 4.26 4.96 4.73 4.33 6.24 4.89 4.48 6.19 

1-pentene 3.63 3.46 3.39 2.34 2.24 3.09 2.30 2.20 3.14 2.52 2.41 3.16 2.61 2.44 4.76 2.70 2.53 4.60 

Methylcyclopentane 8.47 8.31 1.35 5.46 5.34 1.57 5.37 5.24 1.73 5.88 5.77 1.34 6.09 5.90 2.24 6.29 6.08 2.40 

Iso-octane 53.99 54.33 0.44 34.81 34.82 0.02 34.21 34.07 0.29 37.48 38.09 1.14 38.81 38.96 0.27 40.09 39.67 0.74 

n-heptane 12.60 12.85 1.39 8.12 8.24 1.04 7.98 8.06 0.71 8.75 9.01 2.07 9.05 9.23 1.39 9.36 9.41 0.38 

Toluene 14.73 14.97 1.14 9.50 9.59 0.67 9.33 9.38 0.38 10.23 10.59 2.45 10.59 10.82 1.52 10.94 11.00 0.39 

Tetrahydrofuran (THF) - - - 12.94 12.08 4.86 - - - - - - - - - - - - 

2-
Methyltetrahydrofuran 

- - - 22.60 23.77 3.57 22.87 24.07 3.62 - - - 13.91 14.40 2.45 12.83 13.39 3.02 

Acetone - - - - - - 13.77 12.97 4.23 10.80 10.22 3.90 - - - - - - 

2-Butanone - - - - - - - - - 19.78 19.65 0.47 14.20 13.92 1.41 - - - 

Ethanol - - - - - - - - - - - - - - - 12.93 13.44 2.74 

 

Where: 

X = Blend Composition (wt %) 

Y = DHA Composition (wt %) 
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4.2. Results of model prediction vs. experimental data 1 

The properties of the prepared surrogate fuels obtained from Yunus et al. (2014) are re-calculated 2 

using the property models in VPPD-Lab. Results obtained from Yunus et al. (2014), and extended 3 

calculations through rigorous property models in VPPD-Lab are compared with the experimental 4 

results and the variation for both model-simulated results [Yunus et al. (2014) and VPPD-Lab] with 5 

the experimental results presented in terms of RSD values. The model-simulated results in 6 

comparison with the experimental data of RVP, ρ, η, RON and distillation temperatures (T10, T50 and 7 

T90) are given in Table 7, Table 8, Table 9, Table 10 and Table 11 respectively. 8 

The RVP values predicted by the Yunus et al. (2014) model are found to be lower for blends 2-5 and 9 

higher for MI as compared to results obtained from the experiment. Only for blend 1, the model 10 

predictions by Yunus et al. (2014) is in good agreement with the experimental results. Assuming ideal 11 

solution behavior, activity coefficients for all the molecules present in the blends are considered to be 12 

unity for the sake of simplicity of calculations. This assumption inevitably means that there is a 13 

negligible interaction between the molecules of the different compounds in blends. However, results 14 

given in Table 7 suggest that this hypothesis is not consistent. To improve the model prediction on 15 

RVP, interactions between the molecules are considered in the VPPD-Lab model, which accounts for 16 

the non-ideality of the mixture and requires the incorporation of the activity coefficient of all the 17 

compounds. Results of RVP values and their RSD values are given in Table 7 which reflect an 18 

improvement in the model prediction of RVP. 19 

The experimental values of ρ are in close agreement with the model prediction which can be observed 20 

from their RSD values given in Table 8. Similarly, both Yunus et al. (2014) model results and VPPD-21 

Lab results for η are also in good agreement with the experimental data as shown in Table 9. The 22 

application of the more rigorous models for viscosity in VPPD-Lab (Eq. 4 – Eq. 11) helps in 23 

improving the results of viscosity for all blends as evident from the lower RSD values. Both models 24 

can be used to calculate the viscosity of the surrogates with a considerable accuracy as evident from 25 

the low RSD values. 26 

The RON values obtained using GC-DHA for MI and blend 5 are slightly lower than the Yunus et al. 27 

(2014) model calculation for RON as given in Table 10. The difference in results can be attributed to 28 

the slight change in composition that occurs while injecting the sample in the GC.  29 

The distillation temperatures (T10, T50 and T90), given in Table 11, calculated in VPPD-Lab are in 30 

excellent agreement with the GC-DHA results of distillation temperatures as indicated by the very 31 

low RSD values. The exceptions are T10 of Blend 2 and Blend 3, where slightly higher RSD values 32 

of 9.98% and 10.19% are reported respectively. Nonetheless, the agreement of the model and 33 

experimental results indicates that it can be added as a constraint to the model which will help 34 

improve screening of the right candidates for fuel blends.  35 

It is worth noting here that experimental data is used to confirm the credibility of Yunus et al. (2014) 36 

model and to identify its shortcomings. As for the case of RVP of gasoline blends, experimental data 37 

was found to be much higher than the predicted values. Similarly, the model prediction of η of the 38 

gasoline blends requires improvement as the predicted values slightly deviate from the experimentally 39 

measured ones. Thus fine tuning of these properties is necessary to improve the model capabilities. 40 

This was accomplished by integrating either non-ideality of the mixture or non-linearity of 41 

physicochemical properties as given in Eq. 2 or Eq. 4. Thus an experimental feedback helped to 42 

converge the model predictions and currently used to measure a wider range of properties.  43 

 44 
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 1 

Table 7:  Comparison of experimentally determined RVP value of gasoline surrogate blends with their predicted values using 2 

different computational model  3 

 
ID 

RVP (YZ[)   

Experimental Model  
(Yunus et al. 2014) 

Model 
(VPPD-Lab) 

RSD (%) 
(Yunus et al. 2014) 

RSD (%) 
(VPPD-Lab) 

MI 51.0 55.2 54.0 5.54 4.04 
Blend 1 46.2 46.0 50.8 0.31 6.71 
Blend 2 60.4 46.0 64.5 19.14 4.64 
Blend 3 58.9 49.0 63.7 12.98 5.54 
Blend 4 50.1 45.0 53.5 7.58 4.64 
Blend 5 55.1 45.0 58.9 14.27 4.71 

 4 

Table 8: Density (ρ) of gasoline surrogate blends comparison with experimental value 5 

 
ID 

ρ at 15oC 

 ( \
]^_) 

 

Experimental Model 
(VPPD-Lab) 

RSD (%) 

MI 0.7113 0.7260 1.45 
Blend 1 0.7596 0.7709 1.04 

Blend 2 0.7482 0.7618 1.27 
Blend 3 0.7333 0.7480 1.40 
Blend 4 0.7395 0.7528 1.26 
Blend 5 0.7357 0.7487 1.24 

 6 

  7 
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Table 9: Comparison of viscosity (η) of gasoline surrogate blends with experimental value 1 

 
ID 

η at 20⁰⁰⁰⁰C (^Z[. b)   

Experimental Model  
(Yunus et al. 2014) 

Model 
(VPPD-Lab) 

RSD (%) 
(Yunus et al. 2014) 

RSD (%) 
(VPPD-Lab) 

MI 0.50 0.51 0.51 1.40 1.40 
Blend 1 0.54 0.48 0.54 8.32  0 
Blend 2 0.46 0.47 0.45 1.52 1.55 
Blend 3 0.45 0.48 0.43 4.56 3.21 
Blend 4 0.46 0.50 0.46 5.89 0 
Blend 5 0.61 0.57 0.62 4.79 1.15 

 2 

Table 10: Comparisons of RON of gasoline fuel surrogates with GC-DHA technique used  3 

 
ID 

RON    

 GC-DHA Model 
(Yunus et al. 2014) 

Model 
VPPD-Lab 

RSD (%) 
(Yunus et al. 

2014) 

RSD (%) 
VPPD-LAB 

MI 91 92 92 0.77 0.77 
Blend 1 88 - - - - 
Blend 2 91 - - - - 
Blend 3 98 - - - - 
Blend 4 93 - - - - 
Blend 5 95 96 96 0.74 0.74 

 4 

 5 

Table 11: Distillation temperatures (T10, T50 and T90) of gasoline fuel surrogates 6 

 
ID 

T10 (oC) RSD (%) T50 (oC) RSD 
(%) 

T90 (oC) RSD 
(%) 

Exp. Model 
(VPPD-Lab) 

Exp. Model 
(VPPD-Lab) 

Exp. Model 
(VPPD-Lab) 

MI 72.0 72.0 0 99.0 99.0 0 111 109.3 1.09 

Blend 1 66.0 70.7 4.86 98.0 98.4 0.29 99 103.2 2.94 

Blend 2 56.0 64.5 9.98 98.0 98.1 0.07 99 103.2 2.94 

Blend 3 56.0 64.7 10.19 98.0 98.6 0.43 99 100 0.71 

Blend 4 72.0 73.6 1.55 99.0 99.0 0 99 100 0.71 

Blend 5 72.0 73.0 0.98 99.0 99.0 0 99 97 1.44 

 7 

  8 
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5 Conclusion 1 

The gasoline blends formulated though the fine-tuned model-based method of Yunus et al. (2014) has 2 

been extended to: firstly to re-calculate the target physical properties, such as ρ, η and RVP, and then 3 

to improve these predictions with new extended models; and secondly to add more property 4 

constraints such as Tf and distillation temperatures. The calculations of the surrogate fuel properties 5 

are extended through rigorous models implemented in VPPD-Lab that provide a way for the surrogate 6 

candidates to go through additional screening in terms of a wider range of properties.  7 

In the first stage of our experimental campaign, a sophisticated sampling methodology was developed 8 

to ensure minimal composition variation during the analysis. The effectiveness of the blending and 9 

sampling methodologies have been verified using GC-DHA. Smaller RSD values for the composition 10 

of the blends confirm not only the efficacy of the blending and sampling techniques employed in this 11 

study but also the stability algorithm used in the screening of the blends to ensure miscibility of the 12 

blend compounds.  13 

The results of modeling the physicochemical properties with the extended models are found to be in 14 

solid agreement with the experimental results. Moreover, the extended calculations of η, ρ and 15 

distillation temperatures are also found to be in good agreement with the experimental results for all 16 

gasoline blends. The surrogate fuels developed through the extended calculations can further be used 17 

in the studies that numerically simulate the combustion behavior of the fuel, simiar to the concept 18 

used in our diesl fuel surrogate work (Choudhury et al., 2017). A simulation of combustion will help 19 

in designing a better gasoline fuel which can be used in existing engines without the typical 20 

compromises of power and efficiency that are significant challenges for fuels coming from the 21 

synthetic route. Additionally, butane used in the MI should be substituted with compounds that are 22 

highly soluble in other liquid hydrocarbons present in the blend. Such a surrogate or gasoline blend 23 

will be more realistic since the composition would not vary significantly with climate conditions as 24 

that of the case for butane blends. 25 

This approach can, therefore, complement the regression-based studies found in literature as it 26 

involves a more mechanistic approach toward development of a tailor-made composition. It is 27 

intended as an additional tool to design synthetic fuels by optimizing the blends concerning multiple 28 

properties by setting the appropriate property bounds and considering a much wider range of 29 

chemicals. The present study details a model-based system using collected state-of-the-art property 30 

models which helps generate reliable gasoline surrogate blends efficiently. The approach pursued 31 

herein provides attractive candidates that can be further tested and verified experimentally. A similar 32 

approach has been implemented to design new generations of diesel fuel surrogates that mimic Gas-33 

to-Liquid (GTL) diesel fuel (Choudhury et al., 2017). This procedure reduces the time needed to 34 

develop the product while simultaneously avoiding trial-and-error approaches. Finally, because of the 35 

predictive nature of the model, it is possible to obtain new and innovative fuels from either 36 

conventional crude oil sources or non-conventional sources (e.g. from natural gas, via GTL, coal, via 37 

Coal-to-Liquid (CTL), or biofuels). 38 

 39 
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Appendix: Property Models Used 

 

  

Pure component property  Model Parameter Remark 

1. Higher heating value (HHV)  

2. Measure of toxicity 
 (-LogLC50) 

���� = ���	�

��

�
+ ������


���

�

+ ������

���

�
 

	�
 is the contribution for the first-

order group of type i for property 
p with �� occurrences; ��
 is the 

contribution for the second-order 
group of type j  for property p with 
�� and ��
 is the contribution of 

the third-order group of type k  for 
property p with �� occurrences; 
and w and z are the constants for 
the second-order and third-order 
groups, respectively 

 

Group contribution method 

Liquid density ��� = 	0.29056 − 0.08775	& 

'()* = 	1 + �1 − T
'-�..�/012 

3	 = �83.14	'- ∙ ���789
�/;- 
 

3 (g/cm3) is liquid density; '- (K) 
is critical temperature, ;- (bar) is 
critical pressure; & is Pitzer's 
Acentric Factor; and T is 
temperature (K). 

Modified Rackett correlation 

PCSAFT equation of state (Gross and 
Sadowski, 2001). 

The input parameters for the 
calculation are: Mw (molecular 
weight, g/mol); m (segment 
number); σ (segment diameter, Å); 
</= is segment energy parameter 
(K); and T (K) is temperature. 

Pressure-volume-temperature 
relationship used to estimate 
molar volume  given pressure 
and temperature 

Vapor pressure Modified SRK equation of state (SRK 
EOS).  

 

The input parameters for Modified 
SRK are: critical temperature, 
critical pressure, acentiric factor  

Pressure-volume-temperature 
relationship used to estimate 
pressure given volume and 
temperature 

PCSAFT equation of state (Gross and 
Sadowski, 2001)  

 

The input parameters for PCSAFT 
calculation are: Mw (molecular 
weight, g/mol); m (segment 
number); σ (segment diameter, Å); 
</= is segment energy parameter 
(K); and T (K) is temperature. 

Pressure-volume-temperature 
relationship used to estimate 
pressure given volume and 

temperature 

Dynamatic viscosity > = �� ∙ 1000 ∙ (?*��@Nk
∙ �Ak/T	 + 	Mw
∙ Bk�G	� 

ƞ (cp) is dynamic liquid viscosity; 
Mw (g/mol) is molecular weight; 
Nk is is the number of groups k in 
the molecule; Ak, Bk are model 
parameters; and T (K) is 
temperature 

Kinematic viscosity is defined as 
dynamic viscosity divided by 
density at a given temperature 
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Mixture property Model Parameter Remark 

HHVm;-LogLC50m; 	39 
(linear);  

η (linear) 

; = �?�;�
I

�J
 

 

;� is the property of pure 
component i; ?� is the mass, 
volume or molar fraction of 
component i; and n is the number 
of compounds in mixture. 

Ideal mixing rule is applied for 
these properties 

Reid Vapor Pressure (RVP) KL; = �?�M�;�NOP
I

�J
 

;�NOP is the saturated vapor 
pressure at temperature T; and M�is 
the activity coefficient 

The vapor pressure for blended 
gasoline is referred as the Reid 
vapor pressure (RVP), which is 
defined as the vapor pressure 
measured at a temperature of 
100oF (308 K) in a chamber with 
a vapor/liquid volume ratio of 
4:1.  

Flash point (Tf) �?�M�;�NOP�'�;�,7RNOP
I

�J
− 1 = 0 

;�NOP is the saturated vapor 
pressure at temperature T; M�is the 
activity coefficient; ;�,7RNOP is vapor 

pressure of pure compound s at 
their flash point. The temperature, 
T is deemed to be the flash point 
of the mixture. This property 
model requires an iteration to 
obtain the flash point of the 
mixture 

Flash point ('R) is defined as the 

lowest temperature at which the 
vapor above a liquid can be 
ignited in air. 

The activity coefficient (γi) is 
obtained from GE-models such 
as UNIFAC. ;�NOP�'� is the 
vapor pressure of compound I at 
temperature T 

39  (non-linear) 1
3S = LT9�UV9WX�Y7Z�[\]											 

LT9 = R�?� '_�;_�
`

aJ
											 

�UV9 =�?��UV�
`

aJ
							 

'b = '
∑?�'_� 										 

 

Vcm and ZRAm are molar averages of 
the pure component critical 
volumes and critical 
compressibility factors;  ZRAi  is the 
particular constant for the  Rackett 
equation for compound i. 
However, it can be replaced with 
critical compressibility factor, Zc if 
it is not available; the unit of 
measure for mixture density is 
(mol/cm3), depending on the 
universal gas constant, R 

The modified Rackett equation 
gives the best prediction of the 
pure component density for 
hydrocarbons, and provides a 
good estimation for organic as 
well as inorganic compounds. 
Therefore, the modified Rackett 
equation was extended for 
estimation of the mixture’s 
density 

ηm (non-lnear) de�>L�
= �f�de�>�L��

�T

�
+ 2�f�de g?�f�

h
�T

�

−�gi�e*�f��� h
�T

�
�j��de@k��G
�T

�
 

>(mPa.s) is the mixture viscosity; 
V (cm3/mol) is the mixture 
volume; xi is the mixture mole 
fraction of compound i 

All other parameters can be 
found in Cao et al. 1993 
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Highlights 

• Gasoline surrogate fuels designed via property driven computer aided model  
• The model predicted properties verified via robust experimental techniques 
• The experimental assessments helped in improving model predictability 
• The developed methodology to be used for the deign of synthetic fuels  

 


