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Abstract

Conventional gasoline comprises of a large numbéydrocarbons that makes it difficult to utilize &
model for prediction of its properties. Modelingriseded for a better understanding of the fuel #od
combustion behavior that are essential to enhanek dfuality and improve engine performance. A
simplified alternative is to develop surrogate fu¢hat have fewer compounds and emulate certain
important desired physical properties of the tafgets. Six gasoline blends were formulated throagh
computer aided model based technique “Mixed Intégm-Linear Programming” (MINLP). Different
target properties of the surrogate blends for exaenipeid vapor pressur&yP), dynamic viscosityz(),
density p), Research octane numb&QN) and liquid-liquid miscibility of the surrogatedsids) were
calculated. In this study, more rigorous propergdels in a computer aided tool called Virtual Pesee
Product Design Laboratory (VPPD-Lab) are appliedoactime defined compositions of the surrogate
gasoline. The aim is to primarily verify the defitheomposition of gasoline by means of VPPD-Lghy
andRVP are calculated with more accuracy and constrainth as distillation curve and flash point on
the blend design are also considered. A post-desxperiment-based verification step is proposed to
further improve and fine-tune the “best” selectedaline blends following the computation work. Here
advanced experimental techniques are used to neet®RVP, p, , RON and distillation temperatures.
The experimental results are compared with the inm@elictions as well as the extended calculations
VPPD-Lab.
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1. I ntroduction

Fuels such as conventional gasoline are complexuneix of hundreds of hydrocarbons that frequently
vary with time and location (Pitz and Mueller, 2D1This complexity makes it extremely difficult to
study underlying fundamental processes such as ustinh, emission and other physical properties of
fuels. Currently, it is not possible to model comignal gasoline through a detailed kinetic modets

the kinetics and interactions of all the compoumissent in conventional gasolines are not fully
understood (Mueller et al., 2012). As a resultawofable approach to overcoming these problentseis t
use of surrogate fuels that represent their coiwealt counterparts but are comprised of a smaller
number of organic compounds. In general, a sureofyei is one that is composed of a small and dever
number of organic compounds that mimic certainedtcharacteristics of the original fuel (Pitz et al
2007). Since simulations are frequently performednd) modern engine testing and fuel combustioa, th
simpler composition of the surrogate fuels allow foore efficient simulations (Reiter et al., 2015).
Surrogate fuels not only provide a better undedstenof the effects of the composition on different
desired/undesired properties but also have valuginas-invariant reference fuels for experimental
studies.

There are several published articles on the gdoaraf surrogate fuels for gasoline (Mueller ef aD12;
Mehl et al., 2011), diesel (Pitz et al., 2007) @tduel (EImalik et al., 2014). Mehl et al. (201drpposed

a liquid blend ofn-heptanejso-octane, toluene and 2-pentene in an attempt tehrthe physical and
chemical properties of real non-oxygenated gasolihey also proposed a simplified kinetic mechanism
of fuel combustion in an engine with this four campnt surrogate fuel, without compromising ignition
delay times and flame speeds for a broad rangpeyhting conditions.

In addition to time-invariant reference fuels, sgates can also be used directly as synthetic.fuels
However, to enhance the surrogate’s physicochemicglerties and reduce consumption, other chemical
additives are required. Numerous studies have pedormed to identify additives for gasoline (Catiak
et al. 2013; Masum et al. 2015; Rodriguez-AntémleR015). Canakci et al. (2013) and Masum et al.
(2015) investigated the effects of alcohol blenadth gasoline on the exhaust emission of a Spark
Ignition (SI) engine. While these studies providséful knowledge, they were mostly empirical inunat
and the application of computational model-basedthoumlogies are now being employed to
design/improve products, enabling them to reachntiaeket faster by reducing expensive and time-
consuming experiments (Gani, 2004). In this respgeente et al. (2011) proposed a systematic compute
aided model-based approach for liquid formulatemdipcts such as liquid insect repellents and sugescr
lotion. Yunus et al. (2014) adapted this approactesign blended products such as gasoline, dieskel
lubricant blends.

According to the method of Yunus et al. (2014), dasoline or diesel blends, first the main ingretlie
(MI) comprising of hydrocarbon building blocks thate representative of the corresponding fuel, are
identified. In the next steps, additives are iderdi and blended with MI to enhance the qualityttod
surrogate fuel. The blends are formulated basethmyet properties such as Reid vapor pres$Rve)(
flash point ), dynamic viscosity), density f), research octane numb&QN), heating valueHHV),
toxicity (LCso), oxygen contentWt,,) and liquid blend miscibility of the surrogate idts. These
targeted properties need to be matched to idethtgfysurrogate fuel representing a desired gasbleral

as they represent various aspects of the fuel asiéts ability to be burned, its engine efficienagd its
environmental impact.
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In another recent study, Luning Park et al. (20&pprt the formulation and development of alcohols-
jet (ATJ) surrogate fuels. They used the physicotbal properties and chemical composition of a
conventional jet-fuel to design a surrogate fuat ik comprised of 30 (vol%) of additives and 761%)
petroleum JP-5. Several surrogate fuels were pedpir investigate physicochemical properties of the
jet-fuel blend. Further, a combustion study wa® aarried out to investigate the engine performance
with the surrogate fuel.

While the experiment based method proposed by lguRirak et al. (2015) could lead to surrogate fuels
with validated target properties, the model-bassadpmuter-aided method of Yunus et al. (2014) is &ble
very quickly search over a wide range of solutimm&entify a set of promising blends. Combiningsth
approach with an experiment based approach, itossible to quickly identify first, a small set of
promising alternatives, then, through experimeatsubsequently verify and fine-tune them to deteemi
the optimal fuel-blend product. Thus, precious expental resources are used only for focused
experiments to validate and improve the blendedyzrt) and not wasted on a blind trial-and-errorcea
The current study is focused on the experimentefie&tion of the physicochemical properties of the
gasoline blends proposed by Yunus et al. (2014), based on the measured properties to further fine
tune and improve the blends. Also, the model-bdsmdework is extended with an improved set of
property models. This paper is organized as follawsSection 2, Surrogate composition predictioa vi
VPPD-lab is described. In Section 3, the methodsded to prepare the surrogate fuels and
experimentally verify their composition and physibemical properties are described. In Sectiond, th
compositional verification is discussed, followey & comparison of the experimental resultsRaN,
RVP,  andp with the VPPD-Lab-predicted values to evaluate dffectiveness of the model used, to
improve its predictability and to fine-tune thermgrate fuel compositions.

2 Blend composition prediction via VPPD-Lab

Recent efforts have investigated the integratiormofdel-based methodologies into a computer-aided
framework as a chemical product design and evaluasoftware called the Virtual Process-Product
Design Laboratory (VPPD-Lab) (Kalakul et al., 2018PPD-Lab allows users to; (1) analyze chemical-
based products by performing virtual experimentedpct property and performance calculations); (2)
predict the properties of products; and (3) crewe product property and product performance models
when needed. However, unlike process simulator®D/Pab can also be used directly for (4) design of
chemicals based products using design templategaftous types of products, such as single molecule
products, formulations, blends, emulsions and dsyiand, (5) to create new product design templates
when the needed template for the desired productotsavailable. VPPD-Lab employs a suite of
algorithms (such as database search, molecularndxidire blend design) and tool boxes (such as
property calculations and property model consistetests) for specific product property prediction,
design, and/or analysis tasks. Within VPPD-Lab, ekeended methodology of Yunus et al. (2014) has
been implemented so that many blended chemicalupteccan be designed and evaluated in terms of
their target properties. The property models usedHe design and evaluation of gasoline blends are
given in Appendix.

Conventional gasoline is comprised of a vast nunatbérydrocarbons, and for a better understanding of
fuel behavior in the combustion engine, a set opprties need to be analyzed. In this sectionfitee
gasoline surrogates plus a conventional gasolir@n(nmgredient) reported by Yunus et al. (2014) are
first evaluated using the extended property matlehly of VPPD-Lab. The five surrogates are obtdine
by blending the main ingredient (MI), which repnetsethe conventional gasoline, with additives ttaob
tailor-made gasoline blends (surrogate fuels) taate properties better than the MI. The five gasoli

3



1 blends should have better fuel performance and orestceed stringent requirements for worldwidd fue
2 handling and gasoline standards as listed in Thble
3
4 Table 1: Gasoline needsto be trandated target properties
Need Target Property Target Value
Ability to be burne: Reid vapor pressure (kP 45<RVP<6C
Flammability Flash point {C) Ti< 27
Engine efficiency Higher heating value (MJ/kg) HHV > 35
Density at 15C (g/cm3) 0.720<p<0.775
RON RON> 92
Consistency of fuel flow Dynamic viscosity at 26C (cP) 0.30<n<0.60
Liquid blend miscibility Gibbs energy of mixing (@te et al., 2011) Trend of AG™* /RT
Environmental impacts Oxygen content (wt %) 2<Wto2< 20
-logLC50 (mol/L ) -log(LC50) < 3.08
5
6  Six chemicals are selected to represent the maiediient (MI) with the composition given in Table 2
7  As additives, 22 hio-based organic chemicals framcivtwo are chosen for tailor-made gasoline blends
8 are considered. The blend design problem is forradlas a Mixed Integer Non-Linear Programming
9 (MINLP) problem, where the fuel composition is t® dptimized subject to target properties. The itent
10 of the additives are represented by binary integegables (zero or one) while the compositionshef M|
11  and the additives are the real variables (zeroutudted). The five most promising ternary blendso(tw
12 additive chemicals and MI) with the minimum convenal gasoline (MI) composition are listed in Table
13 3 with the predicted target properties values fiumnus et al. (2014).
14
15 Table 2: Gasoline surrogate MI composition
Chemical Composition (vol %)
Butane 6.58
n-Heptane 12.6
Iso-octane 53.99
1-Pentene 3.63
Methylcyclopentane 8.47
Toluene 14.73
16
17 Table 3: Gasoline blend candidates with their composition and properties
RVP HHV n Wto, -logLCs,  RON
1D Composition (vol %)
(kPa)  (MJkg)  (cP) (Wt%) (mol/L)
Blend 1 MI(69) THF(11) MeTHF(20) 46 41 0.48 7.2 2.7 -
Blend 2 MI(67) ACE(13) MeTHF (20) 46 41 0.47 7.8 72. -
Blend 3 MI(72) ACE(10) 2BE(18) 49 40 0.48 7.3 2.7 -
Blend 4 MI(75) 2BE(13) MeTHF (12) 45 43 0.50 5.5 92. -
Blend 5 MI(77) EtOH(12) MeTHF (11) 45 42 0.57 6.7 2.8 96
THF: Tetrahydrofuran; MeTHF: Methyl tetrahydrofuran; ACE: Acetone; 2BE: 2-Butanone; EtOH: Ethanol
18
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An important issue when using model-based techsiqne especially property models, is the question o
the accuracy and reliability of the predictionsendfore, to verify the results of Yunus et al. (2)) the
chemicals database and extended predictive moitetsyl of VPPD-Lab are used. The properties of
interest and their corresponding models are retddwom the property model library in VPPD-Lab. One
such property [not considered by Yunus et al.(2Dis4the distillation profile, which is a set ofdreasing
temperatures at which the fuel evaporates foredfiseries of increasing volume percentages (1Gperc
(T10), 50 percent (T50) and 90 percent (T90))his study, the distillation profile is calculatesing the
method of Hoffman (Hoffman, 1969) together with theoperty models in VPPD-Lab. The pure
component properties are obtained from the expatimhelata if they are available or estimated usirgy
models listed in Table 4. The target mixture properodels are given in Table 5. The calculatedltgsu
are given in Table 6 (in Section 4.2).

Table 4: Pure component properties models

Pure component property Model
Higher heating valueHHV;) (Yunus et al., 2014)
PC-SAFT (Gross and Sadowski,
Density 0;) 2001)
PC-SAFT (Gross and Sadowski,
Vapor pressurePf®t) 2001)
Open cup flash poinf;) (Hukkerikar et al., 2012a)
Lethal concentrationl¢gLC50;) (Hukkerikar et al., 2012b)
Dynamic viscosity1;) (Nielsen et al., 2001)
Table5: Mixture Research Octane numbg0QN; (Nielsen et al., 2001) oroperty models
Target mixture property M odéel

Higher Heating ValueiHV Linear mixing rule Eq.1

Density at 15C, p Linear mixing rule Eq.1

Reid Vapor Pressur&vP Modified Raoult’s law Eq.2

Open cup flash point; Liaw, Gerbaud, and Li (2011) Eq.3
Toxicity parameter, -lod(Cso) Linear mixing rule Eq.1
ASTM distillation temperature Hoffman (1969) -
(T10, T50 and T90)

Research Octane numbBON Linear mixing rule Eq.1

Dynamic viscosity at 26C, 5 Linear mixing rule (Cao et al., 2017, Eq.1/Eq. 4-11

Yunus et al. 2014)

The linear mixing rule as shown in Eq. 1 is emptbgs the first estimate for mixture properties knda
have a linear composition dependence:
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where,x; is the mole fraction of compoundand; is pure compound propertf compound. This

model gives a good prediction for mixtures that enanegligible excess properties of mixing (ideal
mixtures). For non-ideal mixtures, the estimatedpprties need to be verified using rigorous models
since their excess properties of mixing need todmsidered.

RVP (Reid Vapor Pressure) of a blend is a functiomofe fraction (x;), liquid activity coefficient ¥;)
and saturated vapor pressupg @s shown in Eq. 2:

n
RVP = z P @)
i=1
Flash point is defined as the lowest temperatunghéth the vapor above a liquid can be ignitedim a
The flash point of a blend is determined using Edt is the function of mole fractiornxy), liquid activity
coefficient ), the saturated vapor pressure at temperaturg®)(and the vapor pressure of pure
compounds at their flash poin;’ Jf). Note that the liquid activity coefficient is mplieted with the well-

known UNIFAC group contribution method with fineated interaction parameters Kalakul et al. (2017)

n
x;yPE*(T)
P:gat = 1 (3)
i=1 LTy
In this work, Linear mixing rule for density andsubsity calculations provides a good initial estiora
for the blends. However, the rigorous viscosity eloabtained from Cao et al. (1993) issued to correc
the composition with the viscosity recalculatedhwitie non-linear model as shown in Eq. 4 - 11:

NC NC NC NC
X GNP Pi
ln(nV) = Z (pl-ln(niVi) +2 Z (pl-ln <—l> — Z < L r‘l l) Z Hﬁln(‘rji) (4)
i i i i t Ji
NC
V=) xl 5)
i
NC
= Z U, iRk (6)
i
NC
qi = Z VUg,i Qk (7)
i
a
Tij = exp (— %) (8)
0; = X;T; (9)
COX
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9, =—2Jt (10)
Ry
Xq]
9, = —11J (11)
T YN xiq

where 7 is the mixture viscosityy is the mixture volume that can be calculadédcm’/mol) and »; are
pure compound molar volume and viscosity;, R, andQ,, are group parameters obtained from
Magnussen et al. (198%); is calculated from the group interaction paranstgy,. ¢ is volume
fraction.6;; is parameted; is surface fraction.

3 Verification by experimental techniques
31 Materials

In this study, the chemicals used in preparatiorfived gasoline blends are-butane,n-heptane,iso-
octane, 1-pentene, methylcyclopentane (MeCP), nelue tetrahydrofuran (THF), 2-methyl
tetrahydrofuran (MeTHF), acetone (ACE), 2-butan(2RE) and ethanol (ETOH). All the chemicals are
procured from Sigma-Aldrich and have a purity68%. The blending procedure is carried out follayin
the compositions provided in Table 2 and Table Sention 2.

3.2 Blend preparation and sampling technique

For any gasoline grade, the octane number is fikemlighout the year, blRVP varies according to the
climate condition. In industry, butane is addedgtsoline to improve th&/P of the fuel and the
concentration of butane is increased as the cogdather sets in. Butane is an inexpensive gastand i
presence in fuel can cause significant improveriretite RVP of the fuel due to its higher vapor pressure
of 244 kPa. A regular summer gasoline contains @fmately 2% butane (Pugliaresi, 2015). However,
butane cannot be directly added to the storage mnthe tank is not designed for the preparatfdhe
gasoline-butane mixture. Industries use specidinigoes for the blending of butane on a large scale
(Technics, 2012).

The gasoline blends formulated in this study hatégh n-butane concentration (approximately 594).
Butane, having a very high vapor pressure of 244 &P25°C, has the tendency to escape on exposure to
ambient conditions. Moreover, 1-pentene, which &las a high vapor pressure of 80.4 kPa at@5s
highly volatile in nature. Therefore, the blend gmsition is prone to change on its exposure to antbi
conditions due to the escaping nature of bethutane and 1-pentene. The conventional blendimy an
sampling techniques, as well as testing methodse i@ind to be insufficient for the highly volatile
mixtures used in this study. Therefore, to mininghanges in the composition of the gasoline bleanls,
advanced blending technique and a unique samplietihodology was developed. Figs.1&2 shows the
different stages of blend preparation technique thrdsampling device used in this study. The dmdail
description of blend preparation technique and $iagmrotocol is provided in the supplementary
documents. The techniques developed herein arenpara because it allowed us to prepare a blend with
a composition comparable to the formulation predidity the model.
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Figure. 2 : Sampling device: (1)TWV 1; (2)TWV 2;) (300 ml double ended gas cylinder; (4) Sample
injection; (5) Helium gas pressure applied; (6)sBuee gauge (PG); (7) SS316 tube of OD 1/4”; (8)
Sample withdrawing in syringe

33 Propertiestesting methods

To experimentally test the gasoline blends, thiefahg properties - Reid vapor pressuRYP), density

(p), dynamic viscosityy), distillation temperatures (T10, T50, T90), resbaoctane humbeRON) and
composition characteristics — are measured usiferelint equipment and standar&/P for the blends is
determined using Equipment MiniVapXpert by the nfanturer Grabner Instruments according to
ASTM D323. Density ) and dynamic viscosityy] for all the blends are measured using a Stabinger
viscometer by Anton Paar according to ASTM 7042.m@osition characteristics, distillation
temperatures, andON are measured by the Gas Chromatography-Detailelddgrbon Analysis (GC-
DHA) technique using equipment Perkin-Elmer Clas08-according to ASTM D6730.

For GC-DHA technique, the sample is injected intgas chromatograph which comprises of an open
tubular (capillary) column coated with a methylicgihe liquid phase, modified with a capillary pre-
column. The vaporized sample gets transported ¢firéloe column by helium carrier gas. In the column,
it gets partitioned into individual components, eiafter they elute from the end of the column, are
detected by the flame ionization detector (FID).aBming reference standards or samples are used to
identify each eluting component by comparison @irtlietention time under identical conditions. This
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process helps in determining the concentratioracheeomponent in wt % after correction with detecto
response factors and normalization of the pealsarea

Usually, the boiling range characteristics throdggiillation are determined experimentally usingTAS
D86. However, in this study the distillation curigenot determined using ASTM D86 for any of the
blends due to safety concerns associated, owitlgetpresence of-butane in the blends. Consequently,
distillation temperatures are determined by GC-Dit&hnique for all the blends. The GC-DHA
techniqgue uses simulated distillation (SD) by a gasomatography (GC) in which hydrocarbon
components of the sample are eluted in order akawing boiling points in a nonpolar capillary aolu
(methyl silicone phase) as described elsewheredfPet al., 1987). Petroff et al. (1987) compatkd
SD method for determining boiling temperatures witle boiling point (TBP) distillation via ASTM
D86-78/ASTM D1160-77. Petroff et al. (1987) showiedt the boiling point ranges derived from this SD
technique are roughly comparable to TBP value, thedefore should only be used as an approximation
of the distillation profile for the blends.

RON value is also experimentally determined by GC-Didéhnique using the following relationship:
n

RON = Z(al-cl-) (12)
i=1

where,c is the composition of compondrénda; is octane number of the compouind

The octane number of each compound is already miréeethe in-built library supplied with the
equipment, and the composition is determined bynatdization of the peak areas after correction with
detector response factor. Eq. 12 inevitably exkiliiiear combination of the octane number and the
composition of each compound. However, the octameter of the blend is not a linearly mixed property
as interactions are present between the diffefemincals (oxygenates, paraffins, aromatics, naplethe
and olefins) (Lugo et al. 1999). TherefoRON values reported in this study needs further ingatbn
through ASTM D2699.

Nevertheless,RON determination done using GC-DHA technique is arced@nt method for
approximation only. Octane number calculation usheglinear mixing rule and ASTM method reported
by Lugo et al. (1999) indicates a difference of. & RON.

HHV is generally measured using ASTM D240 for liquiditocarbon fuels using a bomb calorimeter. In
this study,HHV is not measured owing to the highly volatile nataf the gasoline surrogate blends and
determination oHHYV of the volatile blends creates a safety concern.

4 Results and discussion
4.1. Composition analysisby GC DHA

In this section, the concentration of each compgumredent in the blends as obtained by GC-DHA study
according to ASTM D6730-01 is compared with theppred blend concentration. Since the composition
of all the blends is already known, the primarypmse of carrying out GC-DHA is to confirm that no
alteration in composition occurs due to unknownnaical reaction or evaporation of volatile compounds
like 1-Pentene and-butane. Moreover, GC-DHA also helps in confirmthg miscibility of the mixtures,
which is a constraint, added in the computer-aigethod. All the chromatograms and composition data

10
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from the GC-DHA analysis can be found in supplemgninaterial provided with this paper (Fig. S1 —-S6
& Table S1-S6).

The variation of blended composition from the cosifion determined using GC-DHA technique is
presented in terms of Relative Standard DeviatR8L) as shown in Table 6. RSD is a standardized
measure of variation in data that is given by titeorof standard deviatiom) and the mean (u). RSD is
expressed in percentage and can be calculated.dy38Eq

RSD = o /u x100 (13)

RSD values in Table 6 did not exceed 6.24% forafrthe components in all the blends, which suggests
that the prepared blend compositions did not changficantly from the predetermined composition.
Moreover, the small RSD values also indicate that fuel blend candidates are miscible. Relatively
larger RSD values for 1-pentene antutane in comparison with other blend chemicadsadrserved due

to the high volatility nature of 1-pentene andbutane, which renders subtle losses during samplin
Moreover, the blends are prepared with an accwfef2%, and there is a possibility that this mihve
also contributed to the difference. The small diéstes in results of blend compositions as denoted b
their RSD values confirm the efficacy of the sti#épilalgorithm, blend preparation and sampling
technigues used in this study.

11



Table 6: Composition verification of all blends using DHA

Ml Blend 1 Blend2 Blend3 Blend4 Blend5
X Y RSD X Y RSD X Y RSD X Y RSD X Y RSD X Y RSD
(wt%)  (wt%) (%)  (Wt%) (wt%) (%)  (Wt%) (Wt%) (%) (wt%) (wt%) (%)  (Wtl%  (Wt%) (%) (Wt%)  (wt%) (%)
n-butane 6.58 6.06 5.82 4.24 3.94 5.19 4.17 4.00 2.94 457 264 4.96 42.73 4.33 6.24 4.89 4.48 6.19
1-pentene 3.63 3.46 3.39 2.34 2.24 3.09 2.30 2.20 3.14 252 412 3.16 2.61 2.44 4.76 2.70 2.53 4.60
M ethylcyclopentane 8.47 8.31 1.35 5.46 5.34 1.57 5.37 5.24 1.73 588 775 1.34 6.09 5.90 2.24 6.29 6.08 2.40
| so-octane 53.99 54.33 0.44 3481 3482 0.02 3421  34.07 0.2937.48 38.09 1.14 38.81 38.96 0.27 40.09 39.67 0.74
n-heptane 12.60 12.85 1.39 8.12 8.24 1.04 7.98 8.06 0.71 8.759.01 2.07 9.05 9.23 1.39 9.36 9.41 0.38
Toluene 14.73 14.97 1.14 9.50 9.59 0.67 9.33 9.38 0.38 310.210.59 2.45 10.59 10.82 1.52 10.94 11.00 0.39
Tetrahydrofuran (THF) - - - 1294 12.08 4.86 - = - - - - - - - - - -
2- - - - 22.60 23.77 3.57 22.87 24.07 3.62 - - - 13.9114.40 2.45 12.83 13.39  3.02
M ethyltetrahydrofuran
Acetone - - - - - - 13.77 12.97 4.23 10.80 10.22 3.90 - - - - - -
2-Butanone - - - - - - - - - 19.78 19.65 0.47 14.20 13.92 141 - - -
Ethanol - - - - - - - - - - - - - - - 1293 1344 274
Where:

X = Blend Composition (wt %)
Y = DHA Composition (wt %)

12
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4.2. Results of model prediction vs. experimental data

The properties of the prepared surrogate fuelsirdddafrom Yunus et al. (2014) are re-calculated
using the property models in VPPD-Lab. Results iabth from Yunus et al. (2014), and extended
calculations through rigorous property models inPiZPLab are compared with the experimental
results and the variation for both model-simulatesults [Yunus et al. (2014) and VPPD-Lab] with
the experimental results presented in terms of R&lues. The model-simulated results in
comparison with the experimental dataRMP, p, », RON and distillation temperatures (T10, T50 and
T90) are given in Table 7, Table 8, Table 9, Tdlfleand Table 11 respectively.

The RVP values predicted by the Yunus et al. (2014) madelfound to be lower for blends 2-5 and
higher for Ml as compared to results obtained fribra experiment. Only for blend 1, the model
predictions by Yunus et al. (2014) is in good agreet with the experimental results. Assuming ideal
solution behavior, activity coefficients for alldimolecules present in the blends are considerbd to
unity for the sake of simplicity of calculationshi§ assumption inevitably means that there is a
negligible interaction between the molecules of diffierent compounds in blends. However, results
given in Table 7 suggest that this hypothesis iscomsistent. To improve the model prediction on
RVP, interactions between the molecules are considerdte VPPD-Lab model, which accounts for
the non-ideality of the mixture and requires theonporation of the activity coefficient of all the
compounds. Resultsf RVP values and their RSD values are given in Table Tchvheflect an
improvement in the model prediction RYP.

The experimental values pfare in close agreement with the model predictibitivcan be observed
from their RSD values given in Table 8. Similatth Yunus et al. (2014) model results and VPPD-
Lab results fom are also in good agreement with the experimerdtd ds shown in Table 9. The
application of the more rigorous models for vistpsh VPPD-Lab (Eq. 4 — Eqg. 11) helps in
improving the results of viscosity for all blends evident from the lower RSD values. Both models
can be used to calculate the viscosity of the gates with a considerable accuracy as evident from
the low RSD values.

The RON values obtained using GC-DHA for Ml and blend & slightly lower than the Yunus et al.
(2014) model calculation fdRON as given in Table 10. The difference in results loarattributed to
the slight change in composition that occurs wimjecting the sample in the GC.

The distillation temperatures (T10, T50 and TO9Weg in Table 11, calculated in VPPD-Lab are in

excellent agreement with the GC-DHA results ofiligion temperatures as indicated by the very
low RSD values. The exceptions are T10 of Blenth@ RBlend 3, where slightly higher RSD values

of 9.98% and 10.19% are reported respectively. Mahess, the agreement of the model and
experimental results indicates that it can be adaedh constraint to the model which will help

improve screening of the right candidates for hlehds.

It is worth noting here that experimental datassdito confirm the credibility of Yunus et al. (201
model and to identify its shortcomings. As for tase ofRVP of gasoline blends, experimental data
was found to be much higher than the predictedegal@imilarly, the model prediction gfof the
gasoline blends requires improvement as the pestlicalues slightly deviate from the experimentally
measured ones. Thus fine tuning of these propdgiescessary to improve the model capabilities.
This was accomplished by integrating either nomdlithe of the mixture or non-linearity of
physicochemical properties as given in Eq. 2 or £qThus an experimental feedback helped to
converge the model predictions and currently useddasure a wider range of properties.
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Table 7: Comparison of experimentally determined RVP value of gasoline surrogate blends with their predicted values using

different computational model

RVP (kPa)

ID

Experimental M odel M odel RSD (%) RSD (%)
(Yunus et al. 2014) (VPPD-Lab) (Yunus et al. 2014) (VPPD-Lab)

MI 51.0 55.2 54.0 5.54 4.04
Blend 1 46.2 46.0 50.8 0.31 6.71
Blend 2 60.4 46.0 64.5 19.14 4.64
Blend 3 58.9 49.0 63.7 12.98 5.54
Blend 4 50.1 45.0 53.5 7.58 4.64
Blend 5 55.1 45.0 58.9 14.27 4.71

Table 8: Density (p) of gasoline surrogate blends comparison with experimental value

p at 15°C
g
' G
Experimental M odel RSD (%)
(VPPD-Lab)

MI 0.7113 0.7260 1.45
Blend 1 0.7596 0.7709 1.04
Blend 2 0.7482 0.7618 1.27
Blend 3 0.7333 0.7480 1.40
Blend 4 0.7395 0.7528 1.26
Blend 5 0.7357 0.7487 1.24

14



Table 9: Comparison of viscosity (n) of gasoline surrogate blends with experimental value

n at 20°C (mPa.s)
ID
Experimental M odel M odel RSD (%) RSD (%)
(Yunus et al. 2014) (VPPD-Lab) (Yunus et al. 2014) (VPPD-Lab)
MI 0.50 0.51 0.51 1.40 1.40
Blend 1 0.54 0.48 0.54 8.32 0
Blend 2 0.46 0.47 0.45 1.52 1.55
Blend 3 0.45 0.48 0.43 4.56 3.21
Blend 4 0.46 0.50 0.46 5.89 0
Blend 5 0.61 0.57 0.62 4.79 1.15
Table 10: Comparisons of RON of gasoline fuel surrogates with GC-DHA technique used
RON
ID
GC-DHA M odel M odel RSD (%) RSD (%)
(Yunus et al. 2014) VPPD-Lab (Yunus etal. VPPD-LAB
2014)
MI 91 92 92 0.77 0.77
Blend 1 88 - - -
Blend 2 91 - - -
Blend 3 98 - - -
Blend 4 93 - - -
Blend 5 95 96 96 0.74 0.74
Table 11: Distillation temperatures (T10, T50 and T90) of gasoline fuel surrogates
T10(°C) RSD (%) T50 (°C) RSD T90 (°C) RSD
ID (%) (%)
Exp. M odel Exp. M odel Exp. M odel
(VPPD-L ab) (VPPD-L ab) (VPPD-L ab)
MI 72.0 72.0 0 99.0 99.0 0 111 109.3 1.09
Blend 1 66.0 70.7 4.86 98.0 98.4 0.29 99 103.2 2.94
Blend 2 56.0 64.5 9.98 98.0 98.1 0.07 99 103.2 2.94
Blend 3 56.0 64.7 10.19 98.0 98.6 0.43 99 100 0.71
Blend 4 72.0 73.6 1.55 99.0 99.0 0 99 100 0.71
Blend 5 72.0 73.0 0.98 99.0 99.0 0 99 97 1.44
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5 Conclusion

The gasoline blends formulated though the fine-dumedel-based method of Yunus et al. (2014) has
been extended to: firstly to re-calculate the tapdgysical properties, such asy andRVP, and then

to improve these predictions with new extended nHsdend secondly to add more property
constraints such ag and distillation temperatures. The calculationshef surrogate fuel properties
are extended through rigorous models implement&tPiRD-Lab that provide a way for the surrogate
candidates to go through additional screeningrimseof a wider range of properties.

In the first stage of our experimental campaigsgjphisticated sampling methodology was developed
to ensure minimal composition variation during #relysis. The effectiveness of the blending and
sampling methodologies have been verified usinglB{Z. Smaller RSD values for the composition
of the blends confirm not only the efficacy of thlending and sampling techniques employed in this
study but also the stability algorithm used in fiteeening of the blends to ensure miscibility & th
blend compounds.

The results of modeling the physicochemical progenvith the extended models are found to be in
solid agreement with the experimental results. Moee, the extended calculations gf p and
distillation temperatures are also found to bedodyagreement with the experimental results for all
gasoline blendsThe surrogate fuels developed through the extendkailations can further be used
in the studies that numerically simulate the cortibosbehavior of the fuel, simiar to the concept
used in our diesl fuel surrogate work (Choudhurglet2017). A simulation of combustion will help
in designing a better gasoline fuel which can bedus existing engines without the typical
compromises of power and efficiency that are sigaift challenges for fuels coming from the
synthetic route. Additionally, butane used in thé $lould be substituted with compounds that are
highly soluble in other liquid hydrocarbons presenthe blend. Such a surrogate or gasoline blend
will be more realistic since the composition woulat vary significantly with climate conditions as
that of the case for butane blends.

This approach can, therefore, complement the regmedased studies found in literature as it
involves a more mechanistic approach toward dewvedop of a tailor-made composition. It is
intended as an additional tool to design synthieets by optimizing the blends concerning multiple
properties by setting the appropriate property bisuand considering a much wider range of
chemicals. The present study details a model-bagst®m using collected state-of-the-art property
models which helps generate reliable gasoline gateoblends efficiently. The approach pursued
herein provides attractive candidates that carubibdr tested and verified experimentally. A simila
approach has been implemented to design new gemsraif diesel fuel surrogates that mimic Gas-
to-Liquid (GTL) diesel fuel (Choudhury et al., 201This procedure reduces the time needed to
develop the product while simultaneously avoidirigl4and-error approaches. Finally, because of the
predictive nature of the model, it is possible totain new and innovative fuels from either
conventional crude oil sources or non-conventicoairces (e.g. from natural gas, via GTL, coal, via
Coal-to-Liquid (CTL), or biofuels).
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Supporting infor mation

Blend preparation and sampling technique are peaviddditionally, the chromatogram for all the
blends and their compositions determined throughBDB2 are given in Fig S1-Fig S6 and Table S1-
Table S6.
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Appendix: Property Models Used

Pure component property Model

Parameter Remark

NG1 NG2

fx) = Z N;Cyp, + Wz M; Dy,
7 7

NG3

+ ZZ OkEkp
i

1. Higher heating value (HHV)

2. Measure of toxicity
(-LogLC50)

C;,, is the contribution for the first- Group contribution method
order group of typéfor property

p with N; occurrences;, is the
contribution for the second-order
group of typg for propertyp with
M; andE,,, is the contribution of
the third-order group of type for
propertyp with 0, occurrences;
andw andz are the constants for
the second-order and third-order
groups, respectively

Liquid density Zra = 0.29056 — 0.08775 w
Temp =1+ (1 _1)0.285714
Tc

p = (83.14 Tc - Zra™™?) /Pc

p (g/cn?) is liquid density:Tc (K)  Modified Rackett correlation
is critical temperaturePc (bar) is

critical pressure; w is Pitzer's

Acentric Factor; and T is

temperature (K).

PCSAFT equation of state (Gross and The

Sadowski, 2001).

input parameters for thePressure-volume-temperature
calculation are: Mw (molecular relationship used to estimate
weight, g/mol); m (segment molar volume given pressure
number);c (segment diameter, A); and temperature

e/k is segment energy parameter

(K); and T (K) is temperature.

Vapor pressure
EOS).

Modified SRK equation of state (SRKhe input parameters for Modified Pressure-volume-temperature

SRK are: critical temperature, relationship used to estimate
critical pressure, acentiric factor  pressure given volume and
temperature

PCSAFT equation of state (Gross and’he input parameters for PCSAFT Pressure-volume-temperature

Sadowski, 2001)

calculation are: Mw (molecular
weight, g/mol); m (segment
number):c (segment diameter, A);
e/k is segment energy parameter
(K); and T (K) is temperature.

relationship used to estimate
pressure given volume and
temperature

Dynamatic viscosity 7 = Mw - 1000 - exp(Z(Nk

- (Ak/T + Mw
“BK)))

n (cp) is dynamic liquid viscosity;
Mw (g/mol) is molecular weight;
Nk is is the number of groups k in
the molecule; Ak, Bk are model
parameters; and T (K) is
temperature

Kinematic viscosity is defined as
dynamic viscosity divided by
density at a given temperature




Mixture property Model Parameter Remark
HHV m;-LogLC50y; pp " P, is the property of pure Ideal mixing rule is applied for
(linear); p= z x;Py componenti; x; is the mass, these properties

n (linear)

volume or molar fraction of
component; andn is the number
of compounds in mixture.

Reid Vapor Pressure (RVP) L
RVP = Z Xy PP

i=1

Pf is the saturated vapor
pressure at temperature T; gni$
the activity coefficient

The vapor pressure for blended
gasoline is referred as the Reid
vapor pressure (RVP), which is
defined as the vapor pressure
measured at a temperature of
100°F (308 K) in a chamber with

a vapor/liquid volume ratio of

4:1.

Pf*t is the saturated vapc
pressure at temperature ;s the
activity coefficient; P’ is vapor
pressure of pure compound s
their flash point. The temperaturt
T is deemed to be the flash poi
of the mixture. This property
model requires an iteration t
obtain the flash point of the
mixture

Flash point T;) is defined as the
lowest temperature at which the
vapor above a liquid can be
ignited in air.

The activity coefficient k) is
obtained from GE-models such
as UNIFAC. Pf*(T) is the
vapor pressure of compound | at
temperature T

o n
Flash point (7) Z X7 PS4 (T) 120
& Py
i=1 ’
Pm (non-linear) 1+(1—TT)§]
— = VemZram
PB
o T
Vem =R xip—?
cL

Vem @ndZgam are molar averages o
the pure component critical
volumes and critical
compressibility factorsZgs is the
particular constant for the Racke
equation for compound

However, it can be replaced with
critical compressibility factoiZ, if

it is not available; the unit of
measure for mixture density is
(mol/cn?), depending on the
universal gas constarR,

The modified Rackett equation
gives the best prediction of the
pure component density for
hydrocarbons, and provides a
good estimation for organic as
well as inorganic compounds.
Therefore, the modified Rackett
equation was extended for
estimation of the mixture’s
density

Nm (Non-Inear) (V)

NC NC
Xi

= Z @iln(nV;) + 2 Z @iln (a)
i i t

NC NC
Z i Z
i j

n(mPa.s) is the mixture viscosity;
V (cm¥mol) is the mixture
volume;x; is the mixture mole
fraction of compound i

All other parameters can be
found in Cao et al. 1993

Reference:

Cao, W., Knudsen K., Fredenslund A., Rasmussemd Eng. Chem. Res. 1993, 32, 2077-2087.

Gross, J., Sadowski, G&nd. Eng. Chem. Res. 2001, 40, 1244-1260.



Highlights

Gasoline surrogate fuels designed via property driven computer aided model
The model predicted properties verified viarobust experimental techniques
The experimental assessments helped in improving model predictability
The developed methodology to be used for the deign of synthetic fuels



