1,333 research outputs found
Asymmetries in the Value of Existence
According to asymmetric comparativism, it is worse for a person to exist with a miserable life than not to exist, but it is not better for a person to exist with a happy life than not to exist. My aim in this paper is to explain how asymmetric comparativism could possibly be true. My account of asymmetric comparativism begins with a different asymmetry, regarding the (dis)value of early death. I offer an account of this early death asymmetry, appealing to the idea of conditional goods, and generalize it to explain how asymmetric comparativism could possibly be true. I also address the objection that asymmetric comparativism has unacceptably antinatalist implications
A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam
We have surveyed two science fields totaling one square degree with Bolocam
at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev-
Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields.
Our survey is sensitive to angular scales with an effective angular multipole
of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60
arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to
constrain the level of total astronomical anisotropy, modeled as a flat
bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590,
760, and 830 uKCMB^2. We statistically subtract the known contribution from
primary CMB anisotropy, including cosmic variance, to obtain constraints on the
SZE anisotropy contribution. Now including flux calibration uncertainty, our
frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are
690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum
suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of
the SZE anisotropy signal, we obtain upper limits on the average amplitude of
their spectrum weighted by our transfer function of 790, 1060, and 1080
uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power
spectrum of density fluctuations, of 1.57. These are the first constraints on
anisotropy and sigma8 from survey data at these angular scales at frequencies
near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap
Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG
We demonstrate an application of spherical harmonic decomposition to analysis
of the human electroencephalogram (EEG). We implement two methods and discuss
issues specific to analysis of hemispherical, irregularly sampled data.
Performance of the methods and spatial sampling requirements are quantified
using simulated data. The analysis is applied to experimental EEG data,
confirming earlier reports of an approximate frequency-wavenumber relationship
in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX
style
A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey
We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey,
which covers 324 square arcmin to a very uniform point source-filtered RMS
noise level of 1.4 mJy/beam. The fluctuation analysis has the significant
advantage of utilizing all of the available data. We constrain the number
counts in the 1-10 mJy range, and derive significantly tighter constraints than
in previous work: the power-law index is 2.7 (+0.18, -0.15), while the
amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or
N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results
agree extremely well with those derived from the extracted source number counts
by Laurent et al (2005). Our derived normalization is about 2.5 times smaller
than determined by MAMBO at 1.2mm by Greve et al (2004). However, the
uncertainty in the normalization for both data sets is dominated by the
systematic (i.e., absolute flux calibration) rather than statistical errors;
within these uncertainties, our results are in agreement. We estimate that
about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure
Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time
Background
Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique.
Methods
We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool.
Results
Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small.
Conclusion
Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for.
The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
Studies of atmospheric noise on Mauna Kea at 143 GHz with Bolocam
We report measurements of the fluctuations in atmospheric emission (atmospheric noise) above Mauna Kea recorded with Bolocam at 143 GHz. These data were collected in November and December of 2003 with Bolocam mounted on the Caltech Submillimeter Observatory (CSO), and span approximately 40 nights. Below ≃ 0.5 Hz, the data time-streams are dominated by the f-δ atmospheric noise in all observing conditions. We were able to successfully model the atmospheric fluctuations using a Kolmogorov-Taylor turbulence model for a thin wind-driven screen in approximately half of our data. Based on this modeling, we developed several algorithms to remove the atmospheric noise, and the best results were achieved when we described the fluctuations using a low-order polynomial in detector position over the 8 arcminute focal plane. However, even with these algorithms, we were not able to reach photon-background-limited instrument photometer (BLIP) performance at frequencies below ≃ 0.5 Hz in any observing conditions. Therefore, we conclude that BLIP performance is not possible from the CSO below ≃ 0.5 Hz for broadband 150 GHz receivers with subtraction of a spatial atmospheric template on scales of several arcminutes
- …
