1,110 research outputs found

    Density Variations over Subparsec Scales in Diffuse Molecular Gas

    Get PDF
    We present high-resolution observations of interstellar CN, CH, CH^{+}, \ion{Ca}{1}, and \ion{Ca}{2} absorption lines toward the multiple star systems HD206267 and HD217035. Substantial variations in CN absorption are observed among three sight lines of HD206267, which are separated by distances of order 10,000 AU; smaller differences are seen for CH, CH^{+}, and \ion{Ca}{1}. Gas densities for individual velocity components are inferred from a chemical model, independent of assumptions about cloud shape. While the component densities can differ by factors of 5.0 between adjacent sightlines, the densities are always less than 5000 cm^{-3}. Calculations show that the derived density contrasts are not sensitive to the temperature or reaction rates used in the chemical model. A large difference in the CH^{+} profiles (a factor of 2 in column density) is seen in the lower density gas toward HD217035.Comment: 9 pages, 2 figures. Accepted for publication in ApJ

    OH+ in Diffuse Molecular Clouds

    Get PDF
    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.Comment: 15 pages, 4 figures, to appear in ApJ Letter

    Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure

    Get PDF
    Within the last 10 years, strong, narrow Na I absorption has appeared at v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued to strengthen, by a factor 2-3, over the past three years. The line of sight appears to be moving into/through a relatively cold, quiescent intermediate velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K) for the portion of the IV cloud sampled at that time. The relatively high fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ

    Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS

    Full text link
    We discuss the results of continued spectroscopic monitoring of the variable intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After reaching maxima in mid-2000, the column densities of both Na I and Ca II in that IV component declined by factors >= 2 by the end of 2006. Comparisons between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS echelle spectra obtained in 1994--1995 indicate the following: (1) The absorption from the dominant species S II, O I, Si II, and Fe II is roughly constant in all four sets of spectra -- suggesting that the total N(H) and the (mild) depletions have not changed significantly over a period of nearly ten years. (2) The column densities of the trace species C I (both ground and excited fine-structure states) and of the excited state C II* all increased by factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron density n_e (by a factor >= 3) over that 6-year period. (3) The column densities of C I and C II* -- and the corresponding inferred n_H and n_e -- then decreased slightly between 2001 and 2004. (4) The changes in C I and C II* are very similar to those seen for Na I and Ca II. The relatively low total N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not a very dense knot or filament. Partial ionization of hydrogen appears to be responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this case, the variations in those species appear to reflect differences in density and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap

    Key signal contributions in photothermal deflection spectroscopy

    Get PDF
    We report on key signal contributions in photothermal deflection spectroscopy (PDS) of semiconductors at photon energies below the bandgap energy and show how to extract the actual absorption properties from the measurement data. To this end, we establish a rigorous computation scheme for the deflection signal including semi-analytic raytracing to analyze the underlying physical effects. The computation takes into account linear and nonlinear absorption processes affecting the refractive index and thus leading to a deflection of the probe beam. We find that beside the linear mirage effect, nonlinear absorption mechanisms make a substantial contribution to the signal for strongly focussed pump beams and sample materials with high two-photon absorption coefficients. For example, the measured quadratic absorption contribution exceeds 5% at a pump beam intensity of about 1.3×105  W/cm2{1.3}\times{10^{5}}\;{W}/{cm^{2}} in Si and at 5×104  W/cm2{5}\times{10^{4}}\;{W}/{cm^{2}} in GaAs. In addition, our method also includes thermal expansion effects as well as spatial gradients of the attenuation properties. We demonstrate that these effects result in an additional deflection contribution which substantially depends on the distance of the photodetector from the readout point. This distance dependent contribution enhances the surface related PDS signal up to two orders of magnitude and may be misinterpreted as surface absorption if not corrected in the analysis of the measurement data. We verify these findings by PDS measurements on crystalline silicon at a wavelength of 1550 nm and provide guidelines how to extract the actual attenuation coefficient from the PDS signal.Comment: 10 pages, 16 figures, submitted to Journal of Applied Physiv

    The Evolution of Damped Lyman-alpha Absorbers: Metallicities and Star Formation Rates

    Full text link
    The damped Lyman-alpha (DLA) and sub-DLA quasar absorption lines provide powerful probes of the evolution of metals, gas, and stars in galaxies. One major obstacle in trying to understand the evolution of DLAs and sub-DLAs has been the small number of metallicity measurements at z < 1.5, an epoch spanning \~70 % of the cosmic history. In recent surveys with the Hubble Space Telescope and Multiple Mirror Telescope, we have doubled the DLA Zn sample at z < 1.5. Combining our results with those at higher redshifts from the literature, we find that the global mean metallicity of DLAs does not rise to the solar value at low redshifts. These surprising results appear to contradict the near-solar mean metallicity observed for nearby (z ~ 0) galaxies and the predictions of cosmic chemical evolution models based on the global star formation history. Finally, we discuss direct constraints on the star formation rates (SFRs) in the absorber galaxies from our deep Fabry-Perot Ly-alpha imaging study and other emission-line studies in the literature. A large fraction of the observed heavy-element quasar absorbers at 0 < z < 3.4 appear to have SFRs substantially below the global mean SFR, consistent with the low metallicities observed in the spectroscopic studies.Comment: 6 pages,3 figures, To appear in "Probing Galaxies through Quasar Absorption Lines", Proceedings IAU Colloquium 199, 2005, Eds. P. R. Williams, C. Shu, and B. Menar

    Cloud Structure and Physical Conditions in Star-forming Regions from Optical Observations. I. Data and Component Structure

    Full text link
    We present high-resolution optical spectra (at ~0.6--1.8 km s-1) of interstellar CN, CH, CH^+, \ion{Ca}{1}, \ion{K}{1}, and \ion{Ca}{2} absorption toward 29 lines of sight in three star-forming regions, \rho Oph, Cep OB2, and Cep OB3. The observations and data reduction are described. The agreement between earlier measurements of the total equivalent widths and our results is quite good. However, our higher resolution spectra reveal complex structure and closely blended components in most lines of sight. The velocity component structure of each species is obtained by analyzing the spectra of the six species for a given sight line together. The tabulated column densities and Doppler parameters of individual components are determined by using the method of profile fitting. Total column densities along lines of sight are computed by summing results from profile fitting for individual components and are compared with column densities from the apparent optical depth method. A more detailed analysis of these data and their implications will be presented in a companion paper.Comment: 66 pages, 15 figures, accepted to ApJ

    Cervical Cancer in Cameroon: A Three Pronged Approach to Increase Awareness, Vaccination, Screening and Treatment

    Get PDF
    Problem: Cameroon has a disproportionately high burden of cervical cancer due to low awareness that the disease is preventable with prophylactic vaccines, lack of screening and treatment of pre-cancerous lesions, and high prevalence of human immunodeficiency virus (HIV). Between 2007-2013, the Cameroon Baptist Convention Health Services (CBCHS) devised three programs to: (1) increase awareness about cervical cancer; (2) immunize girls aged 9-13 years against human papilloma virus (HPV); and (3) conduct cervical cancer screening and treatment. Approaches: In collaboration with clinicians and researchers at University of Massachusetts and Northeastern University, CBCHS conducted education programs about HPV vaccine and cervical cancer for parents, adolescents, health care workers, and community members. The HPV vaccination demonstration project was implemented in three settings: schools, healthcare facilities, and in communities. CBCHS conducted cervical cancer screening in six sites using a “see and treat approach”. Findings: Following approval by the Ministry of Health, CBCHS nurses educated girls, parents, and communities about HPV, cervical cancer, and HPV vaccine through multimedia coverage. A total of 6,851, 6,517 and 5,876 girls were immunized with first, second and third doses, respectively. Achieving an 84.6% 3-dose completion rate. Since 2007, 30,617 women have been screened with visual inspection with acetic acid and digital cervicography. Women with precancerous lesions were treated with cryotherapy or loop electrical excision procedure. Lesions suspicious for cancer were biopsied for histology. Of those screened, 3,015 (10%) self reported HIV-positivity, 19,837 (64%) were HIV-negative, and the HIV status of the remaining women was unreported (25%). The percentage of HIV infected women diagnosed with cancer was consistently higher than the percentage of HIV uninfected women diagnosed with cancer. Lessons Learned: The project demonstrated that, with adequate education of stakeholders, HPV vaccination and cervical cancer screening programs are acceptable and feasible methods to improve cervical cancer outcomes in Cameroon

    CO emission and variable CH and CH+ absorption towards HD34078: evidence for a nascent bow shock ?

    Full text link
    The runaway star HD34078, initially selected to investigate small scale structure in a foreground diffuse cloud has been shown to be surrounded by highly excited H2. We first search for an association between the foreground cloud and HD34078. Second, we extend previous investigations of temporal absorption line variations (CH, CH+, H2) in order to better characterize them. We have mapped the CO(2-1) emission at 12 arcsec resolution around HD34078's position, using the 30 m IRAM antenna. The follow-up of CH and CH+ absorption lines has been extended over 5 more years. In parallel, CH absorption towards the reddened star Zeta Per have been monitored to check the homogeneity of our measurements. Three more FUSE spectra have been obtained to search for N(H2) variations. CO observations show a pronounced maximum near HD34078's position, clearly indicating that the star and diffuse cloud are associated. The optical spectra confirm the reality of strong, rapid and correlated CH and CH+ fluctuations. On the other hand, N(H2, J=0) has varied by less than 5 % over 4 years. We also discard N(CH) variations towards Zeta Per at scales less than 20 AU. Observational constraints from this work and from 24 micron dust emission appear to be consistent with H2 excitation but inconsistent with steady-state bow shock models and rather suggest that the shell of compressed gas surrounding HD34078, is seen at an early stage of the interaction. The CH and CH+ time variations as well as their large abundances are likely due to chemical structure in the shocked gas layer located at the stellar wind/ambient cloud interface. Finally, the lack of variations for both N(H2, J=0) towards HD34078 and N(CH) towards Zeta Per suggests that quiescent molecular gas is not subject to pronounced small-scale structure.Comment: 19 pages, 15 figures, accepted for publication in A&
    • 

    corecore