54 research outputs found

    Effect of noise and modulation on the reflection of atoms from an evanescent wave

    Get PDF
    We consider the reflection of cold atoms from a temporally modulated evanescent wave, with laser intensity noise, including stochastic surface adsorption. The stochastic surface adsorption is explicitly modeled by means of quantum trajectories while the effect of noise is modeled using the method of stochastic Hamiltonians. The results show that noise destroys quantum features such as interference and splitting, which is especially rapid for semiclassical states. For small noise, modulation can still produce a splitting of the atomic beam, with added dispersion resulting from heating of atoms. In order to distinguish the quantum features, a classical analysis is also presented

    Dissipative nonlinear quantum dynamics in atomic optics

    Get PDF
    It is proposed that the atomic optical system of an ytterbium atom in a time-dependent optical standing wave be used to experimentally observe quantum nonlinear motion and, in particular, predict the quantum behavior of a system whose classical analog ranges from completely integrable, to near integrable, and finally to globally chaotic motion. We extend previous treatments to include spontaneous emission. From the study of theoretical models of dissipative quantum nonlinear motion, it is known that even small amounts of dissipation can significantly alter the quantum dynamics through the destruction of coherences. In this paper we present some theoretical and numerical results of the effect of spontaneous emission on nonlinear nonintegrable dynamics in atomic optics. When spontaneous emission is included, we show that the nature of the light-atom interaction introduces interesting features not usually investigated in models of dissipative quantum nonlinear dynamics. These include a potential that depends on the atom's internal state, a band structure, and a time-dependent dissipative process

    Quantum Zeno effect and parametric resonance in mesoscopic physics

    Full text link
    As a realization of the quantum Zeno effect, we consider electron tunneling between two quantum dots with one of the dots coupled to a quantum point contact detector. The coupling leads to decoherence and to the suppression of tunneling. When the detector is driven with an ac voltage, a parametric resonance occurs which strongly counteracts decoherence. We propose a novel experiment with which it is possible to observe both the quantum Zeno effect and the parametric resonance in electric transport.Comment: 4 pages, 2 figure

    Quantum signatures of chaos in the dynamics of a trapped ion

    Get PDF
    We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realised in the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing wave pulses. Unlike the original optical scheme [G.J.Milburn and C.A.Holmes, Phys. Rev A, 44, p4704, (1991)], the trapped ion enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one of the quantum signatures of chaos; irregular collapse and revival dynamics of the average vibrational energy.Comment: 9 pages, 9 Postscript figures, Revtex, submitted to Phys. Rev.

    Decoherence in ion traps due to laser intensity and phase fluctuations

    Get PDF
    We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.Comment: 2 figures, submitted to PR

    Diffusion Resonances in Action Space for an Atom Optics Kicked Rotor with Decoherence

    Full text link
    We numerically investigate momentum diffusion rates for the pulse kicked rotor across the quantum to classical transition as the dynamics are made more macroscopic by increasing the total system action. For initial and late time rates we observe an enhanced diffusion peak which shifts and scales with changing kick strength, and we also observe distinctive peaks around quantum resonances. Our investigations take place in the context of a system of ultracold atoms which is coupled to its environment via spontaneous emission decoherence, and the effects should be realisable in ongoing experiments.Comment: 4 Pages, RevTeX 4, 5 Figures. Updated Figures, Minor Changes to text, Corrected Reference

    Decoherence in a single trapped ion due to engineered reservoir

    Get PDF
    The decoherence in trapped ion induced by coupling the ion to the engineered reservoir is studied in this paper. The engineered reservoir is simulated by random variations in the trap frequency, and the trapped ion is treated as a two-level system driven by a far off-resonant plane wave laser field. The dependence of the decoherence rate on the amplitude of the superposition state is given.Comment: 4 pages, 2 figure

    Quantum slow motion

    Get PDF
    We investigate the center-of-mass motion of cold atoms in a standing amplitude modulated laser field. We use a simple model to explain the momentum distribution of the atoms after any distinct number of modulation cycles. The atoms starting near a classical phase-space resonance move slower than we would expect classically. We explain this by showing that for a wave packet on the classical resonances we can replace the complicated dynamics in the quantum Liouville equation in phase space by its classical dynamics with a modified potential

    Creation of gap solitons in Bose-Einstein condensates

    Full text link
    We discuss a method to launch gap soliton-like structures in atomic Bose-Einstein condensates confined in optical traps. Bright vector solitons consisting of a superposition of two hyperfine Zeeman sublevels can be created for both attractive and repulsive interactions between the atoms. Their formation relies on the dynamics of the atomic internal ground states in two far-off resonant counterpropagating sigma^+ sigma^- polarized laser beams which form the optical trap. Numerical simulations show that these solitons can be prepared from a one-component state provided with an initial velocity.Comment: 6 pages, 3 figure

    Sensitivity to measurement perturbation of single atom dynamics in cavity QED

    Get PDF
    We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.Comment: 11 pages, 6 figure
    corecore