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Quantum slow motion
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We investigate the center-of-mass motion of cold atoms in a standing amplitude modulated laser field. We
use a simple model to explain the momentum distribution of the atoms after any distinct number of modulation
cycles. The atoms starting near a classical phase-space resonance move slower than we would expect classi-
cally. We explain this by showing that for a wave packet on the classical resonances we can replace the
complicated dynamics in the quantum Liouville equation in phase space by its classical dynamics with a
modified potential.

DOI: 10.1103/PhysRevA.63.023413 PACS number~s!: 42.50.Vk, 03.75.Be, 05.45.2a
ca
th
m

ua

a
th
e

m
a
l
n

er
ch
c
th
th
ith
li

er

em

do
m
de
in
o
th
u
lin
n
m

a
e

en
he

nd
e
ude

tum
f a
he

ro-

ble
ym-
tly

ca-
ces.
ni-
e
cal
s will
we

um-
ese
This
uet
ng-

his

re-
ay

e
ap-
ize
te-
ran-

the
ions
To have an intuitive picture of the quantum-mechani
dynamics of a wave packet we are usually confined to
semiclassical regime, that is, to orbits with action large co
pared to Planck’s constant@1,2#, or to special systems like
the harmonic oscillator, where the quantum evolution eq
tions in phase space are identical to the classical ones@3#. In
this paper we analyze the center-of-mass motion of cold
oms in an amplitude-modulated standing laser field in
limit of large detuning. In this limit we can describe th
dynamics by a sinusoidally modulated cosine potential.

In terms of this physical system we propose a sche
which enables us to describe a wave packet, localized ne
resonance of a classical mixed phase space, by classica
namics in a modified potential. We apply the theory of He
riksen et al. @4# to replace the potential in the high-ord
quantum Liouville equation by an effective potential in su
a way that we obtain a classical Liouville equation. Hen
we describe the quantum motion as a classical motion in
modified potential. We are then able to characterize
quantum effect by comparing the modified dynamics w
the dynamics in the original potential. This method is app
cable well beyond the semiclassical regime for many diff
ent potentials.

Usually quantum effects on wave packets express th
selves in the revival and fractional revival properties@5# or in
the occurrence of tunneling phenomena@6#. Both take place
on a comparatively long-time scale so that we intuitively
not expect quantum effects to be visible on a short-ti
scale. We disprove this intuitive assumption in our mo
where we use the center-of-mass motion of cold atoms
standing amplitude-modulated laser field. Here we dem
strate that the momentum distribution after each cycle of
modulation is peaked at smaller momenta than we wo
expect classically. This shows that the atoms are trave
slower than we would expect from classical simulations a
we can give a very simple explanation of this ‘‘quantu
slow motion’’ phenomenon.

We investigate a cloud of two-level atoms situated in
standing laser field with a periodic modulated amplitud
This system has been the subject of several experim
@7,8#. The Hamiltonian of the center-of-mass motion in t
limit of large detuning is@9#

H~ t !5
p2

2
2k~122e cost !cosq, ~1!
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wherep andq denote scaled dimensionless momentum a
position,t time, andk ande are the parameters defining th
depth of the standing wave and the strength of the amplit
modulation, respectively. Note thatp and q fulfill the com-
mutator relation@p,q#5 i k–, where k– is a scaled Planck’s
constant that is in some sense a measure for the ‘‘quan
mechanicality’’ of the problem since it defines the size o
minimum uncertainty wave packet in relationship to t
resonances@10#.

In Fig. 1 ~left! we show as an example the classical st
boscopic phase-space portrait@11# for e50.2 with k51.2.
This choice of parameters is able to show classical sta
period-one resonances after each modulation period s
metrically situated along the momentum axes. Until recen
all published experimental results did not show any indi
tion of the peaks corresponding to period-one resonan
With increasing laser intensities experimentalists at the U
versity of Queensland@8# were just recently able to show th
experimental indication of atoms loaded in a classi
period-one phase-space resonance. As these experiment
be improved we are convinced that the quantum effect
are describing in this paper will be observed.

The specific phase-space structure allows a quant
mechanical wave packet, situated initially near one of th
resonances, to coherently tunnel to the other resonance.
can be described as Rabi oscillations between two Floq
states of the problem. The tunneling takes place on a lo
time scale in terms of cycles of the modulation.1 One of the
ultimate goals of the experiments is to loadoneresonance in
order to observe quantum tunneling, which is modeled in t
paper.

We simulate the tunneling dynamics by starting each
alization with a minimum uncertainty wave packet that m
be squeezed@12#, centered on the classical resonance. W
then simulate the full quantum-mechanical dynamics by
plying a split operator algorithm with adapted time-step s
@13# in the context of a standard quantum Monte Carlo in
gration scheme to include stimulated and spontaneous t

1Note that this tunneling cannot be understood in terms of
presence of a potential barrier as it is present in several publicat
@6# regarding tunneling in mixed systems.
©2001 The American Physical Society13-1
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FIG. 1. Left: Stroboscopic phase-space portrait of the classical motion described by the Hamiltonian Eq.~1! for k51.2 ande50.2.
Middle and right: Stroboscopic phase-space portraits of the corresponding effective potentials Eq.~7! with k–50.25 andk–50.35. The scales
are identical to the left figure.
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sitions@9#.2. We calculate the mean momenta and the co
sponding variance from the momentum distribution tak
after each cycle of the modulation att52np. In Fig. 2 ~full
line! we show the result of this simulation fore50.2,
k51.2, andk–50.25. Related to recent experiments@8# we
used the parameters for rubidium to obtain a realistic s
nario. We plot the mean momentum after each cycle of
modulation of the standing wave against the number
cycles. As expected and clearly indicated by the decrea
variance, we observe coherent tunneling of the mean
mentum from the location of the resonance at approxima
p51 to the corresponding resonance atp521.

However, there are additional oscillations that might le
to the conclusion that the wave packet is not sitting precis
on the classical period-one fixed point but is indeed circu
ing around an alternative stable point in phase space
seems like the wave packet, centered on the classical r
nance, is not appropriately centered on the ‘‘true’’ resona
but sitting beside it. Therefore the mean momentum at e
kick strongly oscillates around its mean motion. This lea
us to the conclusion that if we would move the initial wa
packet onto this alternative stable point and start the sim
tion of the dynamics from there, we expect the oscillations
vanish. This is exactly what we see in Fig. 2~dashed line!.
The oscillations are strongly compressed. Hence for the
namics of the wave packet obviously not the classical re
nance is important but a modified resonance, shifted towa
slower momentum. This indicates that any tunneling exp
ment depends very sensitively on the initial conditions an
will be very helpful for the experiment, if all parameters a
initial conditions are well investigated. The present pa

2Note that stimulated and spontaneous transitions may have s
influence on the results since we are using realistic experime
parameters. In order to control and simulate these processe
have to apply the Monte Carlo method to the full Hamiltonian giv
in @9# rather than the simplified one of Eq.~1!.
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shows that in order to observe tunneling, one has to s
with a cloud of atoms sitting on the modified resonan
rather than the classical one. Depending on the value ok–

this can be very significant, because for large values ofk– the
modified resonance can be shifted by a such a large am
that tunneling is observable when the wave packet starts
the modified resonance, but it is not observable when it st
on the classical resonance.

How can we explain this effect? To give an explanati
we first recall that a wave packet localized near a class
resonance has been shown@11# to remain localized without
changing its shape, at least for a long time. Therefore
may assume that a minimum uncertainty wave packet sit
near a classical resonance will remain unchanged in sh
for several cycles. This is the main assumption we need
apply to the theory of Henriksenet al. @4# where the effect of
quantum mechanics on a wave packet is described as cl
cal motion, that is, as motion following the classical Lio
ville equations in phase space, but in a modified potentia

The convenient quantum-mechanical phase-space re
sentation is the Wigner functionW(q,p,t), because it has the
correct quantum-mechanical marginal distributions. Since
the experiments we are seeking to describe the momen
distribution and the position distribution of the center-o
mass motion, this property of the Wigner function allows
to compare the marginals directly with the measured dis
butions. The phase-space dynamics of the Wigner functio
given by @14,4#
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FIG. 2. Left: Mean momentum̂p& of the
quantum-mechanical simulation of the dynami
of two wave packets dependent on the number
cycless. The first~straight line! is initially sitting
on the classical resonance (pm51.03), the second
~dashed line! on the modified one atpm50.84.
Here the parameters arek–50.25,k51.2, ande
50.2. Right: Corresponding varianceV@p#.
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whereV(q,t)5k(12e cost)cosq denotes the potential. Thi
representation is convenient for our further analysis and
responds to the well-known one given by Wigner where o
one sum over odd derivatives occurs. We can formally
place the infinite sum by defining an effective potentialVeff
by

]Veff
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E.g., for an exponential potentialV8(q)[ exp(iq) this sim-
plifies to @4#

]Veff8

]q
5

]V8

]q

1

k–
FWS q,p1

k–

2
,t D

2WS q,p2
k–

2
,t D G Y ]W~q,p,t !

]p
. ~4!

With this effective potential Eq.~2! is replaced by the first-
order equation

]W

]t
52p

]W

]q
1

]Veff

]q

]W

]p
~5!

which is identical to the classical Liouville equation descr
ing the classical dynamics in the modified potentialVeff . In
this sense the action of quantum mechanics can be desc
by the classical motion in a modified potential.

Assuming a Gaussian squeezed minimum uncerta
wave packet with time-dependent squeeze parameterj(t),
we take the Wigner function to be of the form

W~q,p,t !5
1

p k–
expS 2

j

k–
~q2^q&!22

1

k–j
~p2^p&!2D ,

~6!

with the mean time-dependent momentum and posit
^p&(t) and ^q&(t), generally chosen in such a way that t
wave packet always stays centered on the resonance in
for the assumption of staying unchanged in shape to rem
valid. Since our analysis is only valid in the vicinity of th
resonance, with this specific choice the inequalit
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(q2^q&)2!1 and (p2^p&)2!1 hold true for all times. It is
straightforward to find the corresponding expression of E
~4! for our cosine potentialV(q) and to insert the Wigner
function Eq.~6! to obtain the analytical expression

Veff~q,t !5V~q,t !expS 2
k–

4
D sinh~p2^p&!

p2^p&
~7!

for the effective potential. Since (p2^p&)2!1 the sinh fac-
tor can, for the sake of qualitative discussion, be appro
mated by 1. That means the motion of the wave packe
locally described by the original potential compressed b
factor of exp(2k–/4).

Technically speaking, this analysis is nothing other tha
first-order iteration procedure since we substitute an e
mated Wigner function to get more information out of th
equations. However, in the case where a Gaussian w
packet proves to be stable the first-order iteration turns ou
be sufficient. This is the case in the vicinity of the res
nances. In all the other phase-space areas the Wigner f
tion is known to change in time since wave packets spre
To make use of this method in all the other phase-sp
regions we could include more iteration steps to describe
spread of an initial wave packet. In that case the first-or
iterative shown here is not applicable. Therefore our int
pretation is only valid for the resonances.

In Fig. 1 ~middle and right! we show fork–50.25 andk–

50.35 classical stroboscopic phase-space portraits for
effective potential and compare them to the phase-space
trait of the original potential. Note that our approximation
only valid in the vicinity of the period-one resonances. Ho
ever, since we are interested in exactly these regions of p
space this kind of representation gives an idea of wha
going on, although the other phase-space regions are not
resented correctly. The main conclusion regarding the re
nances is that the central resonance at (q,p)5(0,0) becomes
smaller and the second-order resonances we are interest
are pushed towards smaller momentap which corresponds
exactly to the observation made in Fig. 2, where we obtai
the best simulation for the tunneling phenomenon for i
tially situating the wave packet at the shifted resonance.

Equation~7! indicates that the effect scales withk– which
identifies that it is a purely quantum-mechanical effect. W
can clearly see this property by comparing Fig. 1~middle!
and ~right!, where we can directly see the relocation of t
classical resonance for two values ofk–. In Fig. 3 we simu-
late wave packets for different values ofk– for the first few
3-3
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M. HUG AND G. J. MILBURN PHYSICAL REVIEW A 63 023413
cycles. We start each simulation with a minimum uncertai
wave packet in such a way that the oscillations in the evo
tion are suppressed most and observe that in correspond
to the modified potential the mean momenta and there
the wave packets themselves are relocated towards sm
velocities with increasingk–. Note that the curve correspond
ing to k–50.25 is related to a situation where the conditio
for tunneling are fulfilled; therefore, the mean momentu
starts to decrease. This result has a considerable impa
current tunneling experiments: For the example shown
Fig. 3, for k–50.25 the distribution of atoms would have
start at momenta down to about 0.82 instead of 1.03, wh
the classical resonance is situated in these units. Fok–

50.3 it is even 0.72. We consider this effect significant
the experiments since the consequence of this shift is th
we would start on a classical resonance we would obse
the oscillatory behavior shown in Fig. 2~straight line! rather
than the expected pure tunneling behavior~dotted line!. If
the deviation is too large, which is the case for even hig
k–, we expect to observe no tunneling at all, whereas with
correct initial conditions it can be observed. Note that th
values ofk– are being realized in current experiments.

Furthermore, in a new generation of experiments it is
tended to place an atomic distribution at any particular po
tion in phase space. One target is to trap the atom at a r
nance to observe the property of a cloud of atoms remain
in that resonance and to observe tunneling. Another ta
@7# is to investigate anomalous diffusion and Levy fligh
We expect the effect described in this paper to have an
pact on this problem as well.

In many other systems even larger values ofk– can be
reached than those shown in this paper, e.g., in an op
hollow fiber. As Eq.~7! indicates, the size of the quantu
slow motion effect depends strongly onk– and we expect tha
related effects are even more dominant as higher valuesk–

are realized. For more complicated systems like a Gaus
potential we expect to be able to extend our theory and th
will be not only a shift but also squeezing and other rela
effects. Therefore we strongly believe that our predictio
will have a strong impact on current and future experimen

There is a second important consequence of this phen
enon in the scenario of present experiments@8# of investigat-
ing the short-time behavior of loading all the resonan
from a spatially uniform distributed cloud of atoms. In ord
to effectively load the resonances we start with a phase s
of 2p/2, that is to say, we now investigate the Hamiltoni

FIG. 3. Mean momentâp& of the quantum-mechanical simula
tion of the dynamics of several wave packets dependent on
number of cycless with k51.2 ande50.2. Herek– takes on the
values 0.15, 0.2, 0.25, 0.3~from top!.
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H~ t !5
p2

2
2k~122e sint !cosq ~8!

and take the snapshots att5p/212np. Then, in contrast to
Fig. 1 the resonances are initially aligned on theq axes and
are therefore covered best by the cloud of atoms. A class
picture of the dynamics suggests that as time goes by o
those atoms initially sitting close to a resonance rema
whereas all the other atoms perform a nonlinear motion c
responding to the fact that they are sitting in a chaotic reg
@15# of phase space. Therefore we expect to observe a
some time only the three peaks of loaded resonances. S
the assumption of a durable wave packet is only valid fo
wave packet initially situated on a resonance and not for
the other wave packets, this motivates us to believe that
local relocation of the resonance described above only h
pens to those atoms trapped at the resonance. This sh
change the overall momentum distribution in comparison
a purely classical simulation.

In Fig. 4 ~left! we compare the momentum distributions
snapshots att59p/2, that is after 2.25 modulation cycle
only, of three different simulations: a quantum-mechani
simulation ~top!, a modified classical simulation~middle!,
and a purely classical simulation~bottom!. Note that this is a
very short time compared to tunneling and revival expe
ments which are typically more than 100 modulation cycl
For the quantum simulation~top! we start with a large num-
ber of wave packets of the width of the distribution in m
mentum of the atom cloud. The width in position is chos
in order to have a minimum uncertainty wave packet. W

he

FIG. 4. Left: Quantum, modified classical, and purely classi
simulation ~from top! of momentum distributionsP@p# of snap-
shots after 2.25 modulation cycles of the Hamiltonian equation~8!
with k51.2, e50.2, andk–50.35. Right: The same simulations bu
for the unmodulated casee50.
3-4
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QUANTUM SLOW MOTION PHYSICAL REVIEW A 63 023413
distribute them uniformly on theq axis, apply the Monte
Carlo integration scheme to each of them and finally add
the contribution of each wave packet to get the whole m
mentum distribution. In the purely classical simulation~bot-
tom! we simply take a cloud of point particles uniform
distributed in theq direction and Gaussian distributed inp
direction. Then the individual motion of the atoms is treat
classically by letting the atoms evolve following the classi
Liouville dynamics, but we still have included stimulate
and spontaneous transitions in a Monte Carlo integra
scheme.

Note that the quantum peaks are shifted towards sma
momenta. This shift becomes larger with the scaled Plan
constantk– which is a further indication that this effect ca
be explained quantum mechanically as described above
show that the occurrence of the effective potential may
principle be sufficient to explain this feature, we simula
this by applying the classical simulation again~middle!,
where we now change the trajectory according to the ef
tive potential once we start on a resonance. This is a v
simple approach which is certainly only useful to sho
qualitatively that our explanation is suitable to describe
quantum dynamics. But we note that this modified class
simulation indeed shows the essential features of the p
quantum simulations.

In Fig. 4 ~right! we show the same simulations but wit
out any modulation. Here the differences corresponding
the quantum-mechanical effect vanish and now more or
all three simulations show the same structure. This struc
is due to classical transient effects, which appear in the
cs

.

ys

ev

P

m

.
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few cycles and are closely related to the motion in the sta
ing wave, since they are independent of the modulation. T
transient is always there and interferes with the quantu
mechanical effect investigated in this paper. However,
quantum-mechanical effect is easy to identify since it va
ishes fore50. Therefore this effect is clearly related to th
modulation and shows a quantum feature of the class
mixed phase space. Note that the fact that the effect is v
ishing for e50 is consistent with our theory since in th
case we face classical integrable motion. A wave packe
such a system is not stabilized but spreads and change
shape and therefore the assumption for applying the the
of Henriksenet al. @4# is no longer valid.

To conclude, we have shown that we can use the prop
that wave packets stay localized on resonances of a clas
mixed phase space to simplify the complicated quantum
namics in phase space. In this case we can describe the q
tum dynamics of the wave packet by the classical motion
a modified potential. This is not only valid for the cosin
potential investigated, but also, as already mentioned in@4#,
for polynomial potentials of arbitrary high order and fo
other systems that have been topic of investigations of
relationship of classical chaotic motion and the correspo
ing quantum dynamics. For example, there is the ato
bouncer in an evanescent field@16#, V(q,t)5lq1k(1
1e cost)exp(2q). This setup of evanescent light waves c
be modified to get a Morse potential@17# which serves as an
atomic trap. In these cases it is also very straightforward
find the modified potential and to come to similar conc
sions as we did.
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