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Effect of noise and modulation on the reflection of atoms from an evanescent wave

Wen-Yu Chen, G. J. Milburn, and S. Dyrting
Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia

~Received 15 February 1996!

We consider the reflection of cold atoms from a temporally modulated evanescent wave, with laser intensity
noise, including stochastic surface adsorption. The stochastic surface adsorption is explicitly modeled by
means of quantum trajectories while the effect of noise is modeled using the method of stochastic Hamilto-
nians. The results show that noise destroys quantum features such as interference and splitting, which is
especially rapid for semiclassical states. For small noise, modulation can still produce a splitting of the atomic
beam, with added dispersion resulting from heating of atoms. In order to distinguish the quantum features, a
classical analysis is also presented.@S1050-2947~96!05907-0#

PACS number~s!: 42.50.Vk, 33.80.Ps, 03.65.2w
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I. INTRODUCTION

Considerable work has been done on the wavelike pr
erties of particles of matter, showing that atoms are sub
to phenomena such as interference and diffraction pas
through slits and gratings@1,2#. These are examples of th
spatial variation of the phase of the atomic wave functi
Recently Steaneet al. @3# published experimental result
dealing with the temporal aspect of the wave nature
atomic particles. When the intensity of the evanescent fiel
temporally modulated, the system acts as a phase modu
which is an important tool in studying phase space distri
tion of the cooled atom source or preparing diffraction lim
ited beams and building new atomic interferometers. T
turns out to be quite important for atomic interferome
since frequency and time intervals can be produced m
accurately than distance intervals, thus promising higher
cision methods. Owing to its significance in atom optics,
believe it is worthwhile to study the quantum and classi
features of this special phase modulator theoretically.

Henkelet al. @4# have presented a theoretical analysis
the coherent reflection of atoms from a modulated evan
cent wave using semiclassical~WKB! methods but noise wa
not taken into account. In order to properly assess the fe
bility of interferometry in the time domain, it is necessary
include the loss mechanisms of this system. In this case
system becomes very complicated since, on top of the co
ent Hamiltonian, laser intensity noise, time-dependent mo
lation and stochastic surface adsorption are also involv
The intensity noise is included by adding a stochastic term
the Hamiltonian and the evolution is described by a ma
equation while modulation is included by making th
intensity-dependent coefficient time dependent. To inclu
surface adsorption we treat the surface as an effective
structive coarse-grained measurement of atomic posit
modeled as a Poisson jump stochastic process and the
ditional evolution can be obtained from a determinis
Schrödinger equation. Most conveniently, the resulting m
ter equation is solved by means of the method of quan
trajectories, combined with a second-order split-opera
method for the Hamiltonian part of the dynamics. Furth
more, we also give a classical discussion of the system.
equivalent classical model is obtained by converting
541050-2947/96/54~2!/1510~6!/$10.00
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master equation to a Wigner function equation and trunc
ing to second-order derivatives. The resulting Fokker-Pla
equation is then converted to Ito stochastic differential eq
tions which are solved numerically, thus giving a more co
prehensive analysis of the system.

II. QUANTUM ANALYSIS

The system consists of an atomic mirror resulting from
surface potential produced by the ac Stark shift of the ato
in an evanescent light field along the surface of a gl
prism. The amplitude of the light field is modulated at
frequency of 950 kHz. Cesium atoms released from
magneto-optical trap~MOT! form a cold ‘‘beam’’ which is
further velocity selected to have a narrow velocity distrib
tion at the mirror surface. The cold atoms drop vertical
and are reflected. The reflected beam separates into dis
components, which may be observed by giving the atom
velocity parallel to the surface.

A. Coherent Hamiltonian motion

In the following we only consider the dynamics in th
direction normal to the evanescent field. In terms of dime
sionless variables, the Hamiltonian of the system can
written as

H5
y2

2
1lx1ke2x ~2.1!

with the canonical commutation relations

@x,y#5 iK . ~2.2!

We are using dimensionless position and momentum v
ables defined byx5az wherez is the displacement from the
dielectric surface supporting the evanescent wave anda is
the decay rate of the evanescent wave;y5apz /mv ~where
v is a frequency scaling parameter,m is the mass of the
atom, andpz is the vertical momentum component along t
z axis!. While the scaled gravitational acceleration
l5ag/v2, k5Ea2/mv2, whereE5\uV r u2/D is the am-
plitude of the evanescent potential in terms of the Rabi f
1510 © 1996 The American Physical Society
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54 1511EFFECT OF NOISE AND MODULATION ON THE . . .
quencyV r and the detuning of the laser from the atom
transitionD, andK5\a2/mv is the dimensionless Planc
constant.

Time modulation of the evanescent field can be includ
by makingk time dependent, that is,

k~t!5k„11«cos~Vt!…, ~2.3!

whereV is a scaled frequency variable,« is the modulation
strength, andt5vt is the scaled time variable. The tim
evolution of the system is then governed by the tim
dependent Schro¨dinger equation.

B. Surface adsorption

Any particle that reachesx<0 sticks to the surface and i
not reflected. In the quantum case even particles with in
ficient initial energy can reach the surface by quantum t
neling. We call this stochastic surface adsorption and w
model this as a ‘‘destructive’’ measurement of the particl
position. The measurement is very coarse grained, that
can give only two results: either a ‘‘1’’ if the particle i
found atx<0 or a ‘‘0’’ if the particle is found atx.0. If the
result is 1, the particle is adsorbed and cannot be reflec
Thus for reflection we require only those states for which
result of all position measurements is 0. That is, we o
need to keep track of the conditional states for which
measurement returns the result 0.

Let c(x) be the position probability amplitude for th
particle at some time. The probability to find the particle
x<0 is

p15E
2`

0

dxuc~x!u2, ~2.4!

while the probability to find the particle atx.0 is

p0512p1 . ~2.5!

Now from the general theory of measurements, in terms
operations and effects@5#, p1 can be written in terms of a
positive operatorû,

p15^cuûuc&5tr~ uc&^cuû !, ~2.6!

where û is diagonal in the position basis because it is
coarse-grained position measurement, that is,

ûux&5u~2x!ux& ~2.7!

whereu(x) is the unit step function defined as

u~x!5H 1 if x>0

0 if x,0.
~2.8!

Equivalently,

û[E
2`

`

dxu~2x!ux&^xu. ~2.9!

As the measurement only has two results, 1 or 0,û must
have only two eigenvalues. Henceû is a projection operato
which can be easily confirmed.
d

-

f-
-

ll
s
it

d.
e
y
e

t

f

Equation~2.6! can be written as

p15^c̃~1!uc̃~1!&, ~2.10!

where uc̃ (1)&5 ûuc& is the unnormalized conditional stat
corresponding to a 1 result.

The unnormalized conditional state corresponding to
result ~i.e., particle is found atx.0) is

uc̃~0!&5~ Î 2 û !uc&. ~2.11!

We now assume that the adsorption process may be
proximated by a conditional Poisson process with rateg.
This means that when the atoms get nearx50 there is some
rate of adsorptiong, which is equivalent to assuming tha
our measurement process is a jump processdN(t) where

E„dN~t!…5gdtp1 . ~2.12!

Following Wiseman’s theory@5#, the evolution of the state
conditioned on a sequence of results is given by the stoc
tic Schrödinger equation

ducc~t!&5dN~t!S û

A^û&c

21D ucc~t!&

1dtS 2 iH 1
g

2
~^û&c2 û !D ucc~t!&

~2.13!

or written in terms of the conditional evolution of the dens
operator

drc~t!5dN~t!S ûrû

^û&c

2r D
2dtF i @H,r#2gS û

2
r2r

û

2
2^û&cr D G .

~2.14!

We only want to consider quantum trajectories for whi
the measurement result gives 0~i.e., particle is never adsorb
ed!. In this casedNc(t) is always zero and the stochast
Schrödinger equation reduces to

ducc
~0!~t !&5

gdt

2
~^û&c2 û !ucc

~0!~t !&2 iHdtucc
~0!~t !&.

~2.15!

If we do not require normalization, this is equivalent to

d

dt
uc̃~0!~t !&52 i S H2 i

g

2
û D uc̃~0!~t !&. ~2.16!

Then the total probability that no particle has been found
x<0 for all times up tot is P(0)(t)5^c̃ (0)uc̃ (0)&. This evo-
lution is equivalent to a particle moving in the complex p
tential

v~x![2 i
g

2
u~2x!, ~2.17!
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1512 54WEN-YU CHEN, G. J. MILBURN, AND S. DYRTING
where the value ofg is quite arbitrary provided it is big
enough to account for the surface adsorption. We exp
g21 to be short compared to the time during which the at
is interacting strongly with the evanescent wave.

C. Effect of laser intensity noise

To achieve reflection of a ground-state atom from an e
nescent wave, the difference between the laser and
atomic transition frequencyD5vL2v0 is large compared to
the Rabi frequency and the natural lifetime of the atom
transition. In this case, the effect of spontaneous emissio
small and can be neglected. In what follows only the eff
of intensity noise is considered. We consider two ways
which this noise can arise:~a! as explicit intensity noise on
the classical driving laser and~b! due to a quantum intensit
noise if the evanescent field is coupled to a cavity field, up
which phase measurements are made to monitor the at
bounces. We discuss these cases separately although
mally they have the same effect on the atomic system.

When modulation and noise are included, we have a tim
dependent Hamiltonian with a random component, the c
responding Stratonovich evolution equation takes the fo
@5#

ṙ52
i

K
@H0~t!,r#2

i

K
X~t!@F,r#, ~2.18!

where H0(t) is the deterministic part of the total Hami
tonianH including modulation. The functionF is a function
of position. The fluctuations in the laser intensity is given

X~t!5Ah
dW~t!

dt
, ~2.19!

whereh is the diffusion rate andW(t) is the Wiener pro-
cess.

In order to perform an average over the ensemble Wie
paths we transform Eq.~2.18! into the Ito form@6#

dr~t!52
i

K
@H0~t!,r#dt2

i

K
@F,r#dW~t!

2
h

2K2 †F,@F,r#‡dt. ~2.20!

In our caseF5e2x, and after averaging over the noise, t
corresponding master equation is

dr

dt
52

i

K
@H0~t!,r#2

h

2K2 †e2x,@e2x,r#‡. ~2.21!

In terms of quantum trajectories, solving the master eq
tion ~2.21! numerically is equivalent to solving the followin
Schrödinger equation between jumps,

d

dt
uc̃&52

i

K
Ksuc̃&, ~2.22!

where the complex HamiltonianKs is Ks5H0(t)
2 i (h/2K)e22x and H05(y2/2)1lx1k(11« cosVt)e2x.
As this equation is solved we compute the probability
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p~t!5^c̃~t!uc̃~t!&, ~2.23!

which is the probability for no jump up to timet. This
waiting time distribution can then be sampled to determ
the time at which a jump occurs. If a jump does occur,
state after a jumpuc̃a f ter& is defined in terms of the stat
beforeuc̃be f ore& in the following way:

uc̃a f ter&5
e2xuc̃be f ore&

A^c̃be f oreue22xuc̃be f ore&
. ~2.24!

There has recently been a suggestion@7–9# that if the
evanescent wave forming the atom mirror is coupled to
optical cavity, information about the atomic motion can
extracted by monitoring the phase of the cavity. In that c
the cavity field would need to have a well defined phase,
thus there will be an irreducible level of intensity noise in t
evanescent field. We now show that formally the effect
this noise on the atomic system is of the same form as
~2.21!, although the noise coupling term is quite different

We now take the Hamiltonian to be@7#

Hc5
y2

2
1lx1ma†ae2x, ~2.25!

wherea is the annhilation operator for the cavity field su
taining the evanescent wave. In addition, we assume
cavity field is driven with a coherent laser field and und
goes damping in the usual way to acheive a steady state
much shorter time scale than all time scales connected
the atomic motion. The total master equation is now@10#

dW

dt
52

i

K
@Hc ,W#2 iE@a1a†,W#

1
gm

2
~2aWa†2a†aW2Wa†a!, ~2.26!

whereW is the total density operator for the atom and fie
The second term in this equation describes the coherent d
ing of the cavity while the last term describes the damping
the cavity at a rategm . Following Ref.@10#, we now adia-
batically eliminate the cavity field to obtain a master equ
tion for the atomic system alone. The result is

dr

dt
52

i

K
@H,r#2D†e2x,@e2x,r#‡, ~2.27!

whereH is given in Eq.~2.1! but now the coupling constan
k is related to the coupling constantm in Eq. ~2.25! by
k5mua0u2 wherea052E/gm . The last term in Eq.~2.27!
represents the effect of quantum intensity fluctuations in
cavity field. The decoherence rateD is given by

D5
8m2E2

gm
3 . ~2.28!

In order to be able to make a phase determination of
cavity field it must have a well defined phase to begin wi
For coherent driving this means we needE large and thus the
decoherence term is large. Therefore a good measurem
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54 1513EFFECT OF NOISE AND MODULATION ON THE . . .
leads to a large decoherence decay rate, as expected,
quantum back-action noise. Our quantum trajectory simu
tion can also account for this case simply by the replacem
h/2K2→D.

D. Numerical algorithm

The algorithm in our numerical simulation to solve th
dynamics between jumps is the second order split-oper
method@11#. The formal equation~2.22! is the same but we
have to be very cautious in using it since the Hamilton
will take different expressions in different cases. F
example, when noise is not included, the Hamilton
is described by Ks5H5y2/21lx1k„11«cos(Vt)…e2x

while the effective Hamiltonian with intensity noise an
surface adsorption is given byKs5y2/21lx1k(1
1«cosVt)e2x2i(h/2K)e22x2 i (g/2)u(2x).

The second-order split-operator method solves the ti
dependent Schro¨dinger equation by separating the Ham
tonian into two parts, that is, the kinetic energy part and
potential part. In our case we have

H5T~y!1V~x!, ~2.29!

where T(y)5y2/2, V(x)5lx1ke2x ~without modulation
and noise! or lx1k(11«cosVt)e2x ~with modulation
only!, or lx1k(11«cosVt)e2x2i(h/2K)e22x2i(g/
2)u(2x) ~when modulation, surface adsorption, and no
are all included!, depending on whether the modulation, a
sorption, and noise are included or not. Then the wave fu
tion f(t) evolved over one time step is given by

f~t1dt!5e2 iHDt/Kf~t!

.e2 iTDt/2Ke2 iVDt/Ke2 iTDt/2Kf~t!,

~2.30!

which is accurate up to second order inDt. We have to work
in both position and momentum spaces, the alteration
tween which is carried out by means of the fast Fourier tr
form @12#.

III. CLASSICAL ANALYSIS

It is instructive to compare our numerical results with t
classical theory of atomic reflection. By means of the te
niques described in@13#, we can derive the Wigner functio
evolution equation from the master equation~2.21!. Truncat-
ing the derived equation to second order in the spatial d
vation, we obtain the corresponding classical model in te
of a Fokker-Planck equation@14#,

]W

]t
~x,y,t!52 ẏ

]W

]x
2 ẋ

]W

]y
1

1

2
D~x!

]2W

]y2 , ~3.1!

whereẋ5y andẏ5ke2x, andD(x)[D0e22x describes mo-
mentum diffusion due to laser intensity fluctuations and
correspondence with the quantum counterpart isD05h.
Since the initial energy is smaller than the potential heig
the surface adsorption is negligible and is not included.

The equivalent Ito stochastic differential equations@14#
are
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dx5ydt ~3.2!

dy5ke2xdt1AD0e2xdW~t!, ~3.3!

wheredW(t) is the usual Wiener increment. This defines
highly nonlinear momentum diffusion.

We solve this classical model by numerically integrati
the Ito equations~3.2! and~3.3! for a cloud of initial phase-
space point. We create an initial cloud of points in pha
space which is Gaussian, use NAG routine G05DDF to p
duce the random Wiener increment, and solve the wh
equations numerically by means of the fourth-order sympl
tic integrator@15#.

Since the solution to the deterministic part can be fou
analytically @4#

x~t!5 lnH k

Ei
FcoshS t2tb

t i
D G2J , ~3.4!

y~t!5
2

t
tanhS t2tb

t i
D , ~3.5!

wheret i52/y0 is the time the atom interacts with the ev
nescent wave andy0 the initial momentum, Ei5y0

2/2
1ke2x0 is the initial energy withx0 the initial position,
while tb is the time at which the particles bounce, i.e., t
time when the momentum is zero. We use the above ana
cal solution to check that our numerical calculation giv
sufficient precision.

IV. NUMERICAL RESULTS

A. Parameters

We consider the cesium atom withm52.21310225 kg.
The modulation frequency is 950 kHz,a5107 m21,
g59.81 ms22. Let the scaling frequencyv5106 s21 and
we have the following scaled parameters:l59.831025,
k55.0, andK50.05.

The initial state is chosen to be a minimum uncertain
state which has the wave function

f~x,0!5~2psx!
21/4expS i

y0x

K
2~x2x0!2/4sxD ,

~4.1!

with initial mean positionx05^x&510, initial mean momen-
tum y05^y&522.6, and position variancesx56.5, while
the momentum variance issy5K2/4sx . This corresponds to
an atomic beam with a very large uncertainty in positi
compared with the length scale associated with the eva
cent wave, while also having a well-defined momentum. T
incoming atomic quantum state is thus close to a plane w
and very far from a classical particle interpretation.

B. Results

In all the calculations, scaled parameters are used
they do not have units. In the following figures, the adso
tion has little influence since the atoms turn around bef
they get close enough to the surface.
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1. Quantum case

The mean and variance of the momentum distribution
shown in Fig. 1, where the solid lines are for the case w
out modulation and noise, the dashed lines are for the c
when both modulation and noise are involved, while for bo
cases the lower line represents the mean and the upper
represents the variance. When there is neither modula
nor noise, the mean and variance are very smooth and r
lar, and only change quickly around the turning point. B
the case with modulation and noise is very different, b
mean and variance are changed immensely. Apparently
modulation and noise add features to the mean and varia
hence we will expect some interesting structures to appea
the position and momentum distributions as well.

The far-field momentum distributions with modulatio
and at different noise levels are given in Fig. 2, where
solid line is the case without noise, the dotted line is the c
when the noise ish50.002, and the dashed line is the ca
when the noise ish50.006. Without noise, the modulatio
causes the momentum distribution to split into several w
defined peaks. The separation between these peaks i
same as that predicted by Henkelet al. @4#. But when noise is
included, it is a very different story. As noise increases,
peaks are quickly washed away and the splitting disappe

The far-field position distributions with modulation and
different noise levels are given in Fig. 3, where the solid l
is the case without noise, the dotted line is the case when
noise ish50.006, and the dashed line is the case when
noise ish50.06~note that the noise levels here are differe
from those of the momentum distributions!. Similar to the
momentum distribution, the modulation also causes splitt

FIG. 1. The mean and variance of the momentum distribut
~quantum!: ~a! solid lines, without modulation and noise;~b! dashed
lines, with modulation at frequency 950 kHz and noiseh50.006;
for both cases, the lower line represents the mean, and the u
line represents the variance.
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in the position distribution. But unlike the momentum distri-
bution, the splitting is not easily destroyed by noise. Even a
relatively high noise levels, the peaks are still resolvable.

2. Classical case

The mean and variance of the momentum distribution ar
shown in Fig. 4, where the solid lines are for the case with
out modulation and noise, the dashed lines are for the ca
when both modulation and noise are involved, while for both
cases the lower line represents the mean and the upper li
represents the variance. It shows clearly that modulation an
noise do not influence the mean and variance much and w
cannot see the complicated structures which occur in th
quantum case. As a result, we may not be able to see a
splitting at all, which is really what we have found out nu-
merically.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have presented a complete analysis of th
motion of atoms reflected from an evanescent wave, wit
intensity modulation including both intensity noise and sur
face adsorption. Modulation causes both the momentum an
position distributions to split into multiple-peaked structures
which make it easy to use the system as a phase modulat
This phase modulator has an advantage of being able to ra
idly change the modulation factor of the light wave forming
the mirror, which gives a direct control over the phases an
intensities of the reflected de Broglie waves and allows on

n

per FIG. 2. Far-field momentum distributions with modulation and
at different noise levels~quantum!: ~a! solid line, without modula-
tion and noise;~b! dotted line, with modulation at frequency 950
kHz and noiseh50.002; ~c! dashed line, with modulation at fre-
quency 950 kHz and noiseh50.006.
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54 1515EFFECT OF NOISE AND MODULATION ON THE . . .
to build simple and useful atomic interferometric device
When noise is added, the multiple peaks broaden and are
well resolved, especially in momentum domain. But p
vided the noise is not too high, splitting in both position a
momentum distributions can be easily observed. When n
is not low enough, it will be difficult to see splitting in mo
mentum, but it is still possible to observe splitting in po
tion. It is interesting that the splitting of the momentum d
tribution should be so sensitive to the noise, suggesting
the multiple-peak structure in the momentum distribution

FIG. 3. Far-field position distributions with modulation and
different noise levels~quantum!: ~a! solid line, without modulation
and noise;~b! dotted line, with modulation at frequency 950 kH
and noiseh50.006;~c! dashed line, with modulation at frequenc
950 kHz and noiseh50.06.
ry
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hy
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9

.I
.
ot

-

se

-
at
s

ultimately a kind of quantum interference feature. The no
levels used in our calculation are very low, so it is importa
to experimentally reduce the noise as much as possibl
order to see the multiple peaks discussed in this paper.

Finally, our results indicate that modulation cannot cau
beam splitting in the classical case. Furthermore the no
level does not have much influence on the distributio
Therefore the beam splitting is a purely quantum pheno
enon, and can be attributed to the very large position un
tainty and well defined momentum of the incoming atom
state.

FIG. 4. The mean and variance of the momentum distribut
~classical!: ~a! solid line, without modulation and noise;~b! dashed
line, with modulation at frequency 950 kHz and noiseh50.006; for
both cases, the lower line represents the mean, and the uppe
represents the variance.
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