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Effect of noise and modulation on the reflection of atoms from an evanescent wave

Wen-Yu Chen, G. J. Milburn, and S. Dyrting
Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia
(Received 15 February 1996

We consider the reflection of cold atoms from a temporally modulated evanescent wave, with laser intensity
noise, including stochastic surface adsorption. The stochastic surface adsorption is explicitly modeled by
means of quantum trajectories while the effect of noise is modeled using the method of stochastic Hamilto-
nians. The results show that noise destroys quantum features such as interference and splitting, which is
especially rapid for semiclassical states. For small noise, modulation can still produce a splitting of the atomic
beam, with added dispersion resulting from heating of atoms. In order to distinguish the quantum features, a
classical analysis is also presentg81050-2947@6)05907-0

PACS numbd(ps): 42.50.Vk, 33.80.Ps, 03.65w

[. INTRODUCTION master equation to a Wigner function equation and truncat-
ing to second-order derivatives. The resulting Fokker-Planck
Considerable work has been done on the wavelike propequation is then converted to Ito stochastic differential equa-
erties of particles of matter, showing that atoms are subjedions which are solved numerically, thus giving a more com-
to phenomena such as interference and diffraction passirgfehensive analysis of the system.
through slits and gratinggl,2]. These are examples of the
spatial variation of the phase of the atomic wave function. Il. QUANTUM ANALYSIS
Recently Steaneet al. [3] published experimental results . o )
dealing with the temporal aspect of the wave nature of The system consists of an atomic mirror resulting from a
atomic particles. When the intensity of the evanescent field i§urface potential produced by the ac Stark shift of the atoms
temporally modulated, the system acts as a phase modulatdi, @n evanescent light field along the surface of a glass
which is an important tool in studying phase space distribuPrism. The amplitude of the light field is modulated at a
tion of the cooled atom source or preparing diffraction lim-frequency of 950 kHz. Cesium atoms released from a
ited beams and building new atomic interferometers. Thighagneto-optical trapMOT) form a cold “beam” which is
turns out to be quite important for atomic interferometry further velocity selected to have a narrow velocity distribu-
since frequency and time intervals can be produced mor#on at the mirror surface. The cold atoms drop vertically,
accura’[e|y than distance interva|sy thus promising h|gher preand are reflected. The reflected beam Separates into distinct
cision methods. Owing to its significance in atom optics, wecomponents, which may be observed by giving the atoms a
believe it is worthwhile to study the quantum and classicalVelocity parallel to the surface.
features of this special phase modulator theoretically.
Henkelet al. [4] have presented a theoretical analysis of A. Coherent Hamiltonian motion
the coherent reflection of atoms from a modulated evanes-

cent wave using semiclassidaVKB) methods but noise was In the following we only consider the dynamics in the

not taken into account. In order to properly assess the feasﬁj-.'reCtIon normal to the evangscent field. In terms of dimen-
sionless variables, the Hamiltonian of the system can be

bility of interferometry in the time domain, it is necessary to ™~

include the loss mechanisms of this system. In this case th\grltten as

system becomes very complicated since, on top of the coher- y2

ent Hamiltonian, laser intensity noise, time-dependent modu- H= > +AX+ ke X (2.1
lation and stochastic surface adsorption are also involved.

The intensity noise is included by adding a stochastic term to i _ i

the Hamiltonian and the evolution is described by a masteWith the canonical commutation relations

equation while modulation is included by making the )

intensity-dependent coefficient time dependent. To include [x,y]=iK. 2.2
surface adsorption we treat the surface as an effective de-

structive coarse-grained measurement of atomic positionVe are using dimensionless position and momentum vari-
modeled as a Poisson jump stochastic process and the coables defined byx= az wherez is the displacement from the
ditional evolution can be obtained from a deterministicdielectric surface supporting the evanescent wave arisl
Schralinger equation. Most conveniently, the resulting mas-the decay rate of the evanescent waye;ap,/me (where

ter equation is solved by means of the method of quantunw is a frequency scaling parameten, is the mass of the
trajectories, combined with a second-order split-operatontom, andp, is the vertical momentum component along the
method for the Hamiltonian part of the dynamics. Further-z axis. While the scaled gravitational acceleration is
more, we also give a classical discussion of the system. The= ag/w?, k=Ea?/mew?, whereE=%|Q,|%/A is the am-
equivalent classical model is obtained by converting theplitude of the evanescent potential in terms of the Rabi fre-
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guency (), and the detuning of the laser from the atomic Equation(2.6) can be written as
transitionA, andK=%a?/mw is the dimensionless Planck ~ =1
constant. py=(y |y by, (2.10

Time modulation of the evanescent field can be included ~n 2 ) . "
by making x time dependent, that is where [4Y)=6| ) is the unnormalized conditional state

correspondingd a 1 result.
k(7)=k(1+ecogQ)), (2.3 The unnormalized conditional state corresponding to a 0
result(i.e., particle is found ax>0) is
where() is a scaled frequency variable,is the modulation

strength, andr=wt is the scaled time variable. The time 9O =(1-8)| ). (2.11
evolution of the system is then governed by the time- )
dependent Schdinger equation. We now assume that the adsorption process may be ap-

proximated by a conditional Poisson process with rate
This means that when the atoms get nealO there is some
rate of adsorptiony, which is equivalent to assuming that

not reflected. In the quantum case even particles with insuf-

ficient initial energy can reach the surface by quantum tun- E(dN(7))=yd7p;. (2.12

neling. We call this stochastic surface adsorption and will ] ] , )
model this as a “destructive” measurement of the particle’sFollowing Wiseman'’s theory5], the evolution of the state

position. The measurement is very coarse grained, that is, gonditioned on a sequence of results is given by the stochas-
can give only two results: either a “1” if the particle is tic Schralinger equation

found atx<0 or a “0” if the particle is found atk>0. If the

result is 1, the particle is adsorbed and cannot be reflected. d (7)) =dN(7)
Thus for reflection we require only those states for which the ¢

result of all position measurements is 0. That is, we only

B. Surface adsorption

f(%%—l)lwcu»

need to keep track of the conditional states for which the ] v oA -
measurement returns the result 0. +d7-( —iH+ §(<0>C_ 0)) | (7))
Let #(x) be the position probability amplitude for the
particle at some time. The probability to find the particle at (2.13
=
x<0ls or written in terms of the conditional evolution of the density
0 operator
p1= J dx|y(x)[?, (2.4 .
o 0p6
. . ) . . dp(7)=dN(7) A——p)
while the probability to find the particle at>0 is (6)

Po=1—p1. (2.5 _ 6 6 -
_ —d7i[H.p]=y| 5p=p5=(O)cr| |-
Now from the general theory of measurements, in terms of
operations and effecs], p, can be written in terms of a (2.14

positive operato,
We only want to consider quantum trajectories for which

p1= (| 6| by =tr(|)( | 0), (2.6)  the measurement result givesi®., particle is never adsorb-

A ) » ) _ . ed. In this casedN(7) is always zero and the stochastic
where ¢ is diagonal in the position basis because it is aschralinger equation reduces to
coarse-grained position measurement, that is,

dr . -
B = 6~ )] x) @n  du)= (B DI ()~ iHd (7).
(2.15

If we do not require normalization, this is equivalent to

where #(x) is the unit step function defined as

0 [1 if x=0 28
O(x)= . . d - N\
0 if x<0. PO =i H=i2B|[FOn). @16
Equivalently,
Then the total probability that no particle has been found at
D= fw dx0( =) X)(X]. (2.9  X=0 forall times up tor is PO(7) = (O] y(®). This evo-
—w lution is equivalent to a particle moving in the complex po-
tential

As the measurement only has two results, 1 06 Bust
have only two eigenvalues. Henées a projection operator __ 7

. . . X)=—156(—X), 2.1
which can be easily confirmed. v (%) 2 (=x) (2179
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where the value ofy is quite arbitrary provided it is big p(r)=@(7)|ht/;( ), (2.23
enough to account for the surface adsorption. We expect

v~ to be short compared to the time during which the atomwhich is the probability for no jump up to time. This

is interacting strongly with the evanescent wave. waiting time distribution can then be sampled to determine
the time at which a jump occurs. If a jump does occur, the
C. Effect of laser intensity noise state after a jumpiasie) is defined in terms of the state

To achieve reflection of a ground-state atom from an evaPeforel¥seore in the following way:

nescent wave, the difference between the laser and the .

atomic transition frequenc = w, — wq is large compared to maﬁe» _ e | Ynerord ' (2.24

the Rabi frequency and the natural lifetime of the atomic \/wbeforeje‘zwaefo,g

transition. In this case, the effect of spontaneous emission is

small and can be neglected. In what follows only the effect There has recently been a suggesti@r-9] that if the

of intensity noise is considered. We consider two ways inevanescent wave forming the atom mirror is coupled to an

which this noise can arisé¢a) as explicit intensity noise on optical cavity, information about the atomic motion can be

the classical driving laser ar() due to a quantum intensity extracted by monitoring the phase of the cavity. In that case

noise if the evanescent field is coupled to a cavity field, uporthe cavity field would need to have a well defined phase, and

which phase measurements are made to monitor the atomius there will be an irreducible level of intensity noise in the

bounces. We discuss these cases separately although févanescent field. We now show that formally the effect of

mally they have the same effect on the atomic system. this noise on the atomic system is of the same form as Eq.
When modulation and noise are included, we have a timef2.21), although the noise coupling term is quite different.

dependent Hamiltonian with a random component, the cor- We now take the Hamiltonian to §&]

responding Stratonovich evolution equation takes the form

2

[5] chy? +Ax+ ua'ae™, (2.29
_ [ i
p== R[HO(T)vP]_ RX(T)[FvP]’ (218 \yherea is the annhilation operator for the cavity field sus-

taining the evanescent wave. In addition, we assume this
where Hy(7) is the deterministic part of the total Hamil- cavity field is driven with a coherent laser field and under-
tonianH including modulation. The functioR is a function — goes damping in the usual way to acheive a steady state on a
of position. The fluctuations in the laser intensity is given bymuch shorter time scale than all time scales connected with
the atomic motion. The total master equation is fd@]
dW(7)
X(1)=\n—5— (2.19 dw

dr

i
= - [He.Wl-iEf[a+ a’,wj
where 7 is the diffusion rate andV(7) is the Wiener pro-
cess. | + I 2awa —aTaw-Wa'a),  (2.26
In order to perform an average over the ensemble Wiener 2

paths we transform Ed2.18 into the Ito form[6] ) ] .
whereW is the total density operator for the atom and field.

i i The second term in this equation describes the coherent driv-
dp(7)=— e [Ho(7),pld7—-[F,pJdW(7) ing of the cavity while the last term describes the damping of
the cavity at a ratey,,,. Following Ref.[10], we now adia-

n batically eliminate the cavity field to obtain a master equa-
- W[F’[Frp]]d"- (220 tion for the atomic system alone. The result is
In our caseF=e ™%, and after averaging over the noise, the dp i —X [a—X
. ’ O ' —=——[H,p]-D 2.2
corresponding master equation is dr K[ p]=Dle % [e pll, (2.27

dp [ LA whereH is given in Eq.(2.1) but now the coupling constant
4= lHo(m.pl= 5zl e pll (22D s related to the coupling constapt in Eq. (2.25 by
k= | ag|?> where ay=2E/y,,. The last term in Eq(2.27
In terms of quantum trajectories, solving the master equarepresents the effect of quantum intensity fluctuations in the
tion (2.21) numerically is equivalent to solving the following cavity field. The decoherence raeis given by

Schralinger equation between jumps,
ger eq Jjump 8,22

d ~ i _ I
0= K, (2.22 m
In order to be able to make a phase determination of the
where the complex HamiltonianK, is K,=Hg(7) cavity field it must have a well defined phase to begin with.
—i(7/2K)e % and Hy=(y%/2)+Ax+ k(1+& coddn)e *.  For coherent driving this means we needarge and thus the
As this equation is solved we compute the probability decoherence term is large. Therefore a good measurement

(2.28
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leads to a large decoherence decay rate, as expected, from dx=ydr (3.2
guantum back-action noise. Our quantum trajectory simula-

tion can also account for this case simply by the replacement dy= ke Xd7+ \/D_oe*XdW( 7 (3.3
I2K2—=D. ' '

wheredW(7) is the usual Wiener increment. This defines a
D. Numerical algorithm highly nonlinear momentum diffusion.

The algorithm in our numerical simulation to solve the e solve this classical model by numerically integrating
dynamics between jumps is the second order split-operatdhe Ito equationg3.2) and(3.3) for a cloud of initial phase-
method[11]. The formal equatiori2.22 is the same but we Space po!nt. .We crea_te an initial cloud. of points in phase
have to be very cautious in using it since the HamiltonianSPace which is Gaussian, use NAG routine GOSDDF to pro-
will take different expressions in different cases. Forduce the random Wiener increment, and solve the whole
example, when noise is not included, the Hamiltonian€duations numerically by means of the fourth-order symplec-
is described byK,=H=y22+\x+«(1+scosQn))e * tic integrator{15]. o
while the effective Hamiltonian with intensity noise and  Since the solution to the deterministic part can be found
surface adsorption is given byK,=y%2+Ax+x(1 analytically[4]
+ scofne *—i(7i2K) e~ Z*—i(/2)6(~X).

The second-order split-operator method solves the time- x( r)=|n( K cosl‘( 7~ Tb) 2] 3.4
dependent Schdinger equation by separating the Hamil- E; Ti ' ’
tonian into two parts, that is, the kinetic energy part and the
potential part. In our case we have 2 T—Tp

y(7)= —tanl‘( ) , (3.5
H=T(y)+V(x), (2.29 T Ti

where T(y)=y?/2, V(x)=Ax+ ke * (without modulation where 7;=2ly, is the time the atom interacts with the eva-
and noisg or Ax+x(l+ecoddne ™ (with modulaton nescent wave andy, the initial momentum, E;=y5/2
only), or  Ax+k(1+ecodde *—i(yl2K)e >~i(y/  +«e ¥ is the initial energy withx, the initial position,
2)6(—x) (when modulation, surface adsorption, and noisewhile 7, is the time at which the particles bounce, i.e., the
are all included, depending on whether the modulation, ad-time when the momentum is zero. We use the above analyti-
sorption, and noise are included or not. Then the wave funceal solution to check that our numerical calculation gives

tion ¢(7) evolved over one time step is given by sufficient precision.
_ A~ IHA7/K
p(r+om)=e" """ (1) IV. NUMERICAL RESULTS
~g~ iTAT/ZKe— iVAT/Ke— iTAT/2K¢( 7_), A. Parameters
(2.30 We consider the cesium atom with=2.21x 10~ % kg.
o _ The modulation frequency is 950 kHzx=10" m™1,
which is accurate up to second ordetin. We have to work =9.81 ms 2. Let the scaling frequencp=1¢f s ! and

in both position and momentum spaces, the alteration be;e have the following scaled parameteis=9.8x 10~°
tween which is carried out by means of the fast Fourier tran-. 5 9 andk =0.05. ’

form [12]. The initial state is chosen to be a minimum uncertainty
state which has the wave function
I1l. CLASSICAL ANALYSIS

It is instructive to compare our numerical results with the ¢(x,0)=(27mx)1’4exp< [ yKiX —(X—Xg)?l4oy |,
classical theory of atomic reflection. By means of the tech- @.1)
nigues described ifiL3], we can derive the Wigner function '
evolution equation from the master equati@®1). Truncat- . initial mean positiony= (x) = 10, initial mean momen-
ing the derived equation to second order in the spatial deriz - yo=(y)=—2.6, and Oposition vériancer —6.5. while
vation, we obtain the corresponding classical model in termg o mgmentum vz;\ri’ance i5, = K2/4c, . This éorrés;’)onds to

of a Fokker-Planck equatiori4], an atomic beam with a very large uncertainty in position

W AW oW 1 2W compared with the Iength. scale associ.ated with the evanes-

— (XY, 7)=—Y——X—+=D(X)—5, (3.1) centwave, while also having a well-defined momentum. The

ar ax ay 2 ay incoming atomic quantum state is thus close to a plane wave
. ) and very far from a classical particle interpretation.
wherex=y andy= ke *, andD(x)=Dye " ?* describes mo-
mentum diffusion due to laser intensity fluctuations and its
correspondence with the quantum counterparDig= 7.
Since the initial energy is smaller than the potential height, In all the calculations, scaled parameters are used and
the surface adsorption is negligible and is not included.  they do not have units. In the following figures, the adsorp-

The equivalent Ito stochastic differential equatiqdd] tion has little influence since the atoms turn around before

are they get close enough to the surface.

B. Results
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FIG. 1. The mean and variance of the momentum distribution
(quantum: (a) solid lines, without modulation and noisgs) dashed
lines, with modulation at frequency 950 kHz and noige 0.006;

for both cases, the lower line represents the mean, and the upper F!C- 2. Far-field momentum 'distribu.tior)s with modulation and
line represents the variance. at different noise levelgquantum: (a) solid line, without modula-

tion and noisejb) dotted line, with modulation at frequency 950
kHz and noisey=0.002;(c) dashed line, with modulation at fre-
quency 950 kHz and noisg=0.006.

The mean and variance of the momentum distribution are
shown in Fig. 1, where the solid lines are for the case within the position distribution. But unlike the momentum distri-
out modulation and noise, the dashed lines are for the cadaution, the splitting is not easily destroyed by noise. Even at
when both modulation and noise are involved, while for bothrelatively high noise levels, the peaks are still resolvable.
cases the lower line represents the mean and the upper line
represents the variance. When there is neither modulation 2. Classical case

nor noise, the mean and variance are very smooth and regu- The mean and variance of the momentum distribution are
lar, and only change quickly around the turning point. Butshown in Fig. 4, where the solid lines are for the case with-
the case with modulation and noise is very different, bothoyt modulation and noise, the dashed lines are for the case
mean and variance are changed immensely. Apparently, thghen both modulation and noise are involved, while for both
modulation and noise add features to the mean and variancgases the lower line represents the mean and the upper line
hence we will expect some interesting structures to appear ifepresents the variance. It shows clearly that modulation and
the position and momentum distributions as well. noise do not influence the mean and variance much and we
The far-field momentum distributions with modulation cannot see the complicated structures which occur in the

and at different noise levels are given in Fig. 2, where theyyantum case. As a result, we may not be able to see any
solid line is the case without noise, the dotted line is the casgpjitting at all, which is really what we have found out nu-

when the noise is;=0.002, and the dashed line is the casemerically.
when the noise isy=0.006. Without noise, the modulation
causes the momentum distribution to split into several well-
defined peaks. The separation between these peaks is the
same as that predicted by Henlkelal.[4]. But when noise is In summary, we have presented a complete analysis of the
included, it is a very different story. As noise increases, thanotion of atoms reflected from an evanescent wave, with
peaks are quickly washed away and the splitting disappearmtensity modulation including both intensity noise and sur-
The far-field position distributions with modulation and at face adsorption. Modulation causes both the momentum and
different noise levels are given in Fig. 3, where the solid lineposition distributions to split into multiple-peaked structures,
is the case without noise, the dotted line is the case when thehich make it easy to use the system as a phase modulator.
noise isy=0.006, and the dashed line is the case when th&his phase modulator has an advantage of being able to rap-
noise isy=0.06 (note that the noise levels here are differentidly change the modulation factor of the light wave forming
from those of the momentum distributionsSimilar to the the mirror, which gives a direct control over the phases and
momentum distribution, the modulation also causes splittingntensities of the reflected de Broglie waves and allows one

1. Quantum case

V. CONCLUSIONS AND DISCUSSIONS
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FIG. 3. Far-field position distributions with modulation and at ~ FIG. 4. The mean and variance of the momentum distribution
different noise levelgquantum: (a) solid line, without modulation ~ (classica): (a) solid line, without modulation and noisé) dashed
and noise;(b) dotted line, with modulation at frequency 950 kHz line, with modulation at frequency 950 kHz and noige 0.006; for
and noises=0.006;(c) dashed line, with modulation at frequency both cases, the lower line represents the mean, and the upper line
950 kHz and noise;=0.06. represents the variance.

ultimately a kind of quantum interference feature. The noise
to build simple and useful atomic interferometric devices.levels used in our calculation are very low, so it is important
When noise is added, the multiple peaks broaden and are nti experimentally reduce the noise as much as possible in
well resolved, especially in momentum domain. But pro-order to see the multiple peaks discussed in this paper.
vided the noise is not too high, splitting in both position and  Finally, our results indicate that modulation cannot cause
momentum distributions can be easily observed. When noiseeam splitting in the classical case. Furthermore the noise
is not low enough, it will be difficult to see splitting in mo- level does not have much influence on the distributions.
mentum, but it is still possible to observe splitting in posi- Therefore the beam splitting is a purely quantum phenom-
tion. It is interesting that the splitting of the momentum dis-enon, and can be attributed to the very large position uncer-
tribution should be so sensitive to the noise, suggesting thaainty and well defined momentum of the incoming atomic
the multiple-peak structure in the momentum distribution isstate.
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