342 research outputs found

    Halogenation of SiC for band-gap engineering and excitonic functionalization

    Full text link
    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their realization in laboratory is thus possible. Huge band-gaps of the order of 4 eV are found in the so-called GW approximation, with the occurrence of bright excitons, optically active in the four investigated materials. Their binding energies vary from 0.9 eV to 1.75 eV depending on the decoration choice and in one case, a dark exciton is foreseen to exist in the fully chlorinated SiC. The wide variety of opto-electronic properties suggest halogenated SiC as interesting materials with potential not only for solar cell applications, anti-reflection coatings or high-reflective systems but also for a possible realization of excitonic Bose-Einstein condensation

    Extremal Black Attractors in 8D Maximal Supergravity

    Full text link
    Motivated by the new higher D-supergravity solutions on intersecting attractors obtained by Ferrara et al. in [Phys.Rev.D79:065031-2009], we focus in this paper on 8D maximal supergravity with moduli space [SL(3,R)/SO(3)]x[SL(2,R)/SO(2)] and study explicitly the attractor mechanism for various configurations of extremal black p- branes (anti-branes) with the typical near horizon geometries AdS_{p+2}xS^{m}xT^{6-p-m} and p=0,1,2,3,4; 2<=m<=6. Interpretations in terms of wrapped M2 and M5 branes of the 11D M-theory on 3-torus are also given. Keywords: 8D supergravity, black p-branes, attractor mechanism, M-theory.Comment: 37 page

    On Black Attractors in 8D and Heterotic/Type IIA Duality

    Full text link
    Motivated by the study of black attractors in 8D supergravity with 16 supersymmetries, we use the field theory approach and 8D supersymmetry with non trivial central charges to shed light on the exact duality between heterotic string on T^2 and type IIA on real connected and compact surfaces {\Sigma}2. We investigate the two constraints that should be obeyed by {\Sigma}2 and give their solutions in terms of intersecting 2-cycles as well their classification using Dynkin diagrams of affine Kac-Moody algebras. It is shown as well that the moduli space of these dual theories is given by SO(1,1)x((SO(2,r+2))/(SO(2)xSO(r+2))) where r stands for the rank of the gauge symmetry G_{r} of the 10D heterotic string on T^2. The remarkable cases r=-2,-1,0 as well as other features are also investigated.Comment: LaTex, 18 pages, 2 figures, To appear in JHE

    A Review on Multi-Terminal High Voltage Direct Current Networks for Wind Power Integration

    Get PDF
    With the growing pressure to substitute fossil fuel-based generation, Renewable Energy Sources (RES) have become one of the main solutions from the power sector in the fight against climate change. Offshore wind farms, for example, are an interesting alternative to increase renewable power production, but they represent a challenge when being interconnected to the grid, since new installations are being pushed further off the coast due to noise and visual pollution restrictions. In this context, Multi-Terminal High Voltage Direct Current (MT-HVDC) networks are the most preferred technology for this purpose and for onshore grid reinforcements. They also enable the delivery of power from the shore to offshore Oil and Gas (O&amp;G) production platforms, which can help lower the emissions in the transition away from fossil fuels. In this work, we review relevant aspects of the operation and control of MT-HVDC networks for wind power integration. The review approaches topics such as the main characteristics of MT-HVDC projects under discussion/commissioned around the world, rising challenges in the control and the operation of MT-HVDC networks and the modeling and the control of the Modular Multilevel Converter (MMC) stations. To illustrate the challenges on designing the control system of a MT-HVDC network and to corroborate the technical discussions, a simulation of a three-terminal MT-HVDC network integrating wind power generation and offshore O&amp;G production units to the onshore grid is performed in Matlab's Simscape Electrical toolbox. The results highlight the main differences between two alternatives to design the control system for an MT-HVDC network

    BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network

    No full text
    Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation. <br/

    Smad-Runx interactions during chondrocyte maturation

    Get PDF
    BACKGROUND: Intracellular signaling triggered by bone morphogenetic proteins (BMPs) results in activated Smad complexes that regulate transcription of BMP-responsive genes. However, the low specificity of Smad binding to regulatory sequences implies that additional tissue-specific transcription factors are also needed. Runx2 (Cbfal) is a transcription factor required for bone formation. We have examined the role of Smads and Runx2 in BMP induction of type X collagen, which is a marker of chondrocyte hypertrophy leading to endochondral bone formation. METHODS: Pre-hypertrophic chondrocytes from the cephalic portion of the chick embryo sternum were placed in culture in the presence or absence of rhBMP-2. Cultures were transiently transfected with DNA containing the BMP-responsive type X collagen promoter upstream of the luciferase gene. The cultures were also transfected with plasmids, causing over-expression of Smads or Runx2, or both. After 24-48 hours, cell extracts were examined for levels of luciferase expression. RESULTS: In the presence of BMP-2, chondrocytes over-expressing BMP-activated Smadl or Smad5 showed significant enhancement of luciferase production compared with that seen with BMP alone. This enhancement was not observed with over-expression of Smad2, a transforming growth factor beta (TGF-beta)-activated Smad. Overexpression of Runx2 in BMP-treated cultures increased transcriptional activity to levels similar to those seen with Smads 1 or 5. When chondrocytes were simultaneously transfected with both Runx2 and Smad 1 or 5, promoter activity was further increased, indicating that BMP-stimulated Smad activity can be augmented by increasing the levels of Runx2. CONCLUSIONS: These results implicate the skeletal tissue transcription factor Runx2 in regulation of chondrocyte hypertrophy and suggest that maximal transcription of the type X collagen gene in pre-hypertrophic chondrocytes involves interaction of BMP-stimulated Smads with Runx2. Clinical Relevance: Many skeletal abnormalities are associated with impaired regulation of chondrocyte hypertrophy in growth plates. These studies demonstrate that both BMP-activated Smads and Runx2 levels can modulate chondrocyte transition to hypertrophy

    On Flavor Symmetry in Lattice Quantum Chromodynamics

    Full text link
    Using a well established method to engineer non abelian symmetries in superstring compactifications, we study the link between the point splitting method of Creutz et al of refs [1,2] for implementing flavor symmetry in lattice QCD; and singularity theory in complex algebraic geometry. We show amongst others that Creutz flavors for naive fermions are intimately related with toric singularities of a class of complex Kahler manifolds that are explicitly built here. In the case of naive fermions of QCD2N_{2N}, Creutz flavors are shown to live at the poles of real 2-spheres and carry quantum charges of the fundamental of [SU(2)]2N[SU(2)]^{2N}. We show moreover that the two Creutz flavors in Karsten-Wilczek model, with Dirac operator in reciprocal space of the form iγ1F1+iγ2F2+iγ3F3+isinαγ4F4i\gamma_1 F_1+i\gamma_2 F_2 + i\gamma_3 F_3+\frac{i}{\sin \alpha}\gamma_4 F_4, are related with the small resolution of conifold singularity that live at sinα=0\sin \alpha =0. Other related features are also studied.Comment: LaTex, 40 pages, 8 figure

    Toric Calabi-Yau supermanifolds and mirror symmetry

    Full text link
    We study mirror symmetry of supermanifolds constructed as fermionic extensions of compact toric varieties. We mainly discuss the case where the linear sigma A-model contains as many fermionic fields as there are U(1) factors in the gauge group. In the mirror super-Landau-Ginzburg B-model, focus is on the bosonic structure obtained after integrating out all the fermions. Our key observation is that there is a relation between the super-Calabi-Yau conditions of the A-model and quasi-homogeneity of the B-model, and that the degree of the associated superpotential in the B-model is given in terms of the determinant of the fermion charge matrix of the A-model.Comment: 20 pages, v2: references adde

    The cell cycle regulator p27kip1 contributes to growth and differentiation of osteoblasts

    Get PDF
    The cyclin-dependent kinase (cdk) inhibitors are key regulators of cell cycle progression. p27 and p21 are members of the Cip/Kip family of cdk inhibitors and regulate cell growth by inactivating cell cycle stage-specific CDK-cyclin complexes. Because down-regulation of osteoprogenitor proliferation is a critical step for osteoblast differentiation, we investigated expression of p27 and p21 during development of the osteoblast phenotype in rat calvarial osteoblasts and in proliferating and growth-inhibited osteosarcoma ROS 17/2.8 cells. Expression of these proteins indicates that p21, which predominates in the growth period, is related to proliferation control. p27 levels are maximal postproliferatively, suggesting a role in the transition from cell proliferation to osteoblast differentiation. We directly examined the role of p27 during differentiation of osteoprogenitor cells derived from the bone marrow (BM) of p27-/- mice. BM cells from p27 null mice exhibited increased proliferative activity compared with BM cells from wild-type mice and formed an increased number and larger size of osteoblastic colonies, which further differentiated to the mineralization stage. Although p27-/- adherent marrow cells proliferate faster, they retain competency for differentiation, which may result, in part, from observed higher p21 levels compared with wild type. Histological studies of p27-/- bones also showed an increased cellularity in the marrow cavity compared with the p27+/+. The increased proliferation in bone does not lead to tumorigenesis, in contrast to observed adenomas in the null mice. Taken together, these findings indicate that p27 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in bone cells
    corecore