150 research outputs found

    The effect of different combinations of vascular, dependency and cognitive endpoints on the sample size required to detect a treatment effect in trials of treatments to improve outcome after lacunar and non-lacunar ischaemic stroke

    Get PDF
    Background Endpoints that are commonly used in trials of moderate/severe stroke may be less frequent in patients with minor, non-disabling stroke thus inflating sample sizes. We tested whether trial efficiency might be improved with composite endpoints. Methods We prospectively recruited patients with lacunar and minor non-lacunar ischaemic stroke (NIHSS ≤ 7) and assessed recurrent vascular events (stroke, transient ischaemic attack (TIA), ischemic heart disease (IHD)), modified Rankin Score (mRS) and cognitive testing with the Addenbrooke’s Cognitive Examination (ACE-R) one year post-stroke. For a potential secondary prevention randomised controlled trial (RCT), we estimated sample sizes using individual or combined outcomes, at power 80% (and 90%), alpha 5%, required to detect a relative 10% risk reduction. Results Amongst 264 patients (118 lacunar, 146 non-lacunar), at one year, 30/264 (11%) patients had a recurrent vascular event, 5 (2%) had died, 3 (1%) had clinically-diagnosed dementia, 53/264 (20%) had mRS ≥ 3 and 29/158 (19%) had ACE-R ≤ 82 (57 could not attend for cognitive testing). For a potential trial, at 80% power, using mRS ≥ 3 alone would require n > 5000 participants, recurrent vascular events alone n = 9908 participants, and a composite of any recurrent vascular event, ACE-R ≤ 82, dementia or mRS ≥ 2 (present in 56% of patients) n = 2224 patients. However, including cognition increased missing data. Results were similar for lacunar and non-lacunar minor ischaemic stroke. Conclusions Composite outcomes including vascular events, dependency, and cognition reduce sample size and increase efficiency, feasibility, and relevance to patients of RCTs in minor ischaemic stroke. Efficiency might be improved further with more practical cognitive test strategies

    Blood-Brain Barrier Permeability and Long-Term Clinical and Imaging Outcomes in Cerebral Small Vessel Disease

    Get PDF
    BACKGROUND AND PURPOSE: Increased blood-brain barrier (BBB) permeability occurs in cerebral small vessel disease (SVD). It is not known if BBB changes predate progression of SVD. METHODS: We followed up patients with non-disabling lacunar or cortical stroke and BBB permeability MR imaging following their original stroke. About three years later, we assessed functional outcome (Oxford Handicap Score, OHS, poor outcome defined as 3-6), recurrent neurological events and white matter hyperintensity (WMH) progression on MRI. RESULTS: Amongst 70 patients, mean age 68 (SD±11) years, median time to clinical follow up was 39 months (IQR 30-45), median OHS was 2 (IQR 1-3); poor functional outcome was associated with higher baseline WMH score (p<0.001) and increased basal ganglia BBB permeability (p=0.046). Amongst 48 patients with follow-up MRI, WMH progression at follow-up was associated with baseline WMH (ANCOVA p<0.0001) and age (ANCOVA p=0.032). CONCLUSIONS: Further long term studies to evaluate the role of BBB dysfunction in progression of SVD are required in studies that are large enough to account for key prognostic influences such as baseline WMH and age

    Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study

    Get PDF
    Abstract Research has suggested that the retinal vasculature may act as a surrogate marker for diseased cerebral vessels. Retinal vascular parameters were measured using Vessel Assessment and Measurement Platform for Images of the Retina (VAMPIRE) software in two cohorts: (i) community-dwelling older subjects of the Lothian Birth Cohort 1936 (n = 603); and (ii) patients with recent minor ischaemic stroke of the Mild Stroke Study (n = 155). Imaging markers of small vessel disease (SVD) (white matter hyperintensities [WMH] on structural MRI, visual scores and volume; perivascular spaces; lacunes and microbleeds), and vascular risk measures were assessed in both cohorts. We assessed associations between retinal and brain measurements using structural equation modelling and regression analysis. In the Lothian Birth Cohort 1936 arteriolar fractal dimension accounted for 4% of the variance in WMH load. In the Mild Stroke Study lower arteriolar fractal dimension was associated with deep WMH scores (odds ratio [OR] 0.53; 95% CI, 0.32–0.87). No other retinal measure was associated with SVD. Reduced fractal dimension, a measure of vascular complexity, is related to SVD imaging features in older people. The results provide some support for the use of the retinal vasculature in the study of brain microvascular disease

    How Much Do Focal Infarcts Distort White Matter Lesions and Global Cerebral Atrophy Measures?

    Get PDF
    BACKGROUND: White matter lesions (WML) and brain atrophy are important biomarkers in stroke and dementia. Stroke lesions, either acute or old, symptomatic or silent, are common in older people. Such stroke lesions can have similar signals to WML and cerebrospinal fluid (CSF) on magnetic resonance (MR) images, and may be classified accidentally as WML or CSF by MR image processing algorithms, distorting WML and brain atrophy volume from the true volume. We evaluated the effect that acute or old stroke lesions at baseline, and new stroke lesions occurring during follow-up, could have on measurement of WML volume, cerebral atrophy and their longitudinal progression. METHODS: We used MR imaging data from patients who had originally presented with acute lacunar or minor cortical ischaemic stroke symptoms, recruited prospectively, who were scanned at baseline and about 3 years later. We measured WML and CSF volumes (ml) semi-automatically. We manually outlined the acute index stroke lesion (ISL), any old stroke lesions present at baseline, and new lesions appearing de novo during follow-up. We compared baseline and follow-up WML volume, cerebral atrophy and their longitudinal progression excluding and including the acute ISL, old and de novo stroke lesions. A non-parametric test (Wilcoxon's signed rank test) was used to compare the effects. RESULTS: Among 46 patients (mean age 72 years), 33 had an ISL visible on MR imaging (median volume 2.05 ml, IQR 0.88–8.88) and 7 of the 33 had old lacunes at baseline: WML volume was 8.54 ml (IQR 5.86–15.80) excluding versus 10.98 ml (IQR 6.91–24.86) including ISL (p < 0.001). At follow-up, median 39 months later (IQR 30–45), 3 patients had a de novo stroke lesion; total stroke lesion volume had decreased in 11 and increased in 22 patients: WML volume was 12.17 ml (IQR 8.54–19.86) excluding versus 14.79 ml (IQR 10.02–38.03) including total stroke lesions (p < 0.001). Including/excluding lacunes at baseline or follow-up also made small differences. Twenty-two of the 33 patients had tissue loss due to stroke lesions between baseline and follow-up, resulting in a net median brain tissue volume loss (i.e. atrophy) during follow-up of 24.49 ml (IQR 12.87–54.01) excluding versus 24.61 ml (IQR 15.54–54.04) including tissue loss due to stroke lesions (p < 0.001). Including stroke lesions in the WML volume added substantial noise, reduced statistical power, and thus increased sample size estimated for a clinical trial. CONCLUSIONS: Failure to exclude even small stroke lesions distorts WML volume, cerebral atrophy and their longitudinal progression measurements. This has important implications for design and sample size calculations for observational studies and randomised trials using WML volume, WML progression or brain atrophy as outcome measures. Improved methods of discriminating between stroke lesions and WML, and between tissue loss due to stroke lesions and true brain atrophy are required

    Towards Standardization of Quantitative Retinal Vascular Parameters:Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936

    Get PDF
    Purpose: Semiautomated software applications derive quantitative retinal vascular parameters from fundus camera images. However, the extent of agreement between measurements from different applications is unclear. We evaluate the agreement between retinal measures from two software applications, the Singapore "I" Vessel Assessment (SIVA) and the Vessel Assessment and Measurement Platform for Images of the Retina (VAMPIRE), and examine respective associations between retinal and systemic outcomes.Method: Fundus camera images from 665 Lothian Birth Cohort 1936 participants were analyzed with SIVA and VAMPIRE. Intraclass correlation coefficients (ICC) and Bland-Altman plots assessed agreement between retinal parameters: measurements of vessel width, fractal dimension, and tortuosity. Retinal-systemic variable associations were assessed with Pearson's correlation, and intersoftware correlation magnitude differences were examined with Williams's test.Results: ICC values indicated poor to limited agreement for all retinal parameters (0.159-0.410). Bland-Altman plots revealed proportional bias in the majority, and systematic bias in all measurements. SIVA and VAMPIRE measurements were associated most consistently with systemic variables relating to blood pressure (SIVAr's from -0.122 to -0.183; VAMPIREr's from -0.078 to -0.177). Williams's tests indicated significant differences in the magnitude of association between retinal and systemic variables for 7 of 77 comparisons (P&lt; 0.05).Conclusions: Agreement between two common software applications was poor. Further studies are required to determine whether associations with systemic variables are software-dependent.Translational Relevance: Standardization of the measurement of retinal vascular parameters is warranted to ensure that they are reliable and application-independent. This would be an important step towards realizing the potential of the retina as a source of imaging-derived biomarkers that are clinically useful.</p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population

    Get PDF
    The retinal and cerebral microvasculatures share many morphological and physiological properties. In this pilot we study the strength of the associations between morphological measurements of the retinal vasculature, obtained from fundus camera images, and of features of Small Vessel Disease (SVD), as white matter hyperintensities (WMH) and perivascular spaces (PVS), obtained from MRI brain scans. We performed a 500-trial bootstrap analysis with Regularized Gaussian linear regression on a cohort of older community-dwelling subjects (Lothian Birth Cohort 1936, N = 866) in their eighth decade. Arteriolar bifurcation coefficients, vessel tortuosity and fractal dimension predicted WMH volume in 23% of the trials. Arteriolar widths, venular bifurcation coefficients, and venular tortuosity predicted PVS in up to 99.6% of the trials.<br/

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging

    Characteristics of patients with minor ischaemic strokes and negative MRI: a cross-sectional study

    Get PDF
    International audienceAbstract Background: Diffusion weighted (DWI) MRI is recommended in UK guidelines to evaluate minor strokes, yet can produce negative results. Objective: We determined the rate of negative MRI (including DWI) and associated features in patients presenting to hospital with minor strokes. Methods: We performed a prospective observational cross sectional study in a teaching hospital of patients with a clinical diagnosis of ischaemic lacunar or minor cortical stroke. We performed MRI (DWI, T2, FLAIR, T2* and T1) as soon as possible after presentation. We used multivariate analysis to determine predictors of negative DWI and MRI (all sequences). Gold standard for clinical diagnosis of stroke was the opinion of an expert panel. Results: We recruited 246 patients, mean age 68.1 years (SD 11.6 years), 162 were males (66%) and the median NIHSS was 2 (range 0-8). The median time from stroke onset to MR scan was 12 days (IQR 4-27 days). Eighty-one patients (33%) did not show any ischaemia on DWI. Sixty patients (24%) did not show the recent infarct on MRI (DWI/T2/FLAIR). With multivariate analysis, less severe stroke, younger age, female gender and increased time from stroke onset to scan were associated with negative DWI. With multivariate analysis, younger age and female gender were associated with negative MRI (DWI or T2 or FLAIR) scans. Conclusions: There is a high rate of negative MRI and DWI amongst patients with minor stroke (a third) which has important management and research implications. A negative MRI or DWI does not exclude the diagnosis of stroke
    corecore