12,758 research outputs found

    Embracing the future: embedding digital repositories in the University of London. Briefing paper

    Get PDF
    This briefing paper captures the key findings and recommendations of a study commissioned by the Joint Information Systems Committee (JISC) on aspects of the strategic commitment of institutions to repository sustainability.1 This project, labelled EMBRACE (EMBedding Repositories And Consortial Enhancement) is aimed at enhancing the functionality, inter-operability and extensibility of the SHERPA-LEAP repository service, which currently supports the repositories of thirteen University of London institutions. This briefing paper aims to clarify the different motivations to use and invest in digital repositories, and potential ways to address the challenges to embedding these repositories in institutional strategy and daily operation are highlighted. It is designed for use by Higher Education Institutions (HEIs), who are encouraged to adapt the recommendations to their specific context

    Embracing the future: embedding digital repositories in the University of London

    Get PDF
    Digital repositories can help Higher Education Institutions (HEIs) to develop coherent and coordinated approaches to capture, identify, store and retrieve intellectual assets such as datasets, course material and research papers. With the advances of technology, an increasing number of Higher Education Institutions are implementing digital repositories. The leadership of these institutions, however, has been concerned about the awareness of and commitment to repositories, and their sustainability in the future. This study informs a consortium of thirteen London institutions with an assessment of current awareness and attitudes of stakeholders regarding digital repositories in three case study institutions. The report identifies drivers for, and barriers to, the embedding of digital repositories in institutional strategy. The findings therefore should be of use to decision-makers involved in the development of digital repositories. Our approach was entirely based on consultations with specific groups of stakeholders in three institutions through interviews with specific individuals. The research in this report was prepared for the SHERPA-LEAP Consortium and conducted by RAND Europe

    Ultrafast spectroscopy of single molecules

    Get PDF
    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. At the single molecule level a wide range of exciton delocalisation lengths and energy redistribution times is revealed. Next, two color pump-probe experiments are presented as a step to addressing ultrafast energy transfer in individual complexes

    Comment on "Magnetic field effects on neutron diffraction in the antiferromagnetic phase of UPt3"

    Full text link
    Moreno and Sauls [Phys. Rev. B 63, 024419 (2000)] have recently tried to reanalyze earlier neutron scattering studies of the antiferromagnetic order in UPt3 with a magnetic field applied in the basal plane. In their calculation of the magnetic Bragg peak intensities, they perform an average over different magnetic structures belonging to distinct symmetry representations. This is incorrect. In addition, they have mistaken the magnetic field direction in one of the experiments, hence invalidating their conclusions concerning the experimental results.Comment: Revised 5 June 2001: Added group theory analysis and modified discussion of S and K domain

    null

    Get PDF
    VW

    Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samples

    Get PDF
    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation behaviour in an inhomogeneous yet carefully controlled shear-loaded region of double-notched TRIP and dual-phase (DP) steel samples. A detailed powder analysis has been performed to simultaneously monitor the evolution of the phase fraction and the changes in average carbon concentration of metastable austenite together with the local strain components in the constituent phases as a function of the macroscopic stress and location with respect to the shear band. The metastable retained austenite shows a mechanically induced martensitic transformation in the localized shear zone, which is accompanied by an increase in average carbon concentration of the remaining austenite due to a preferred transformation of the austenite grains with the lowest carbon concentration. At the later deformation stages the geometry of the shear test samples results in the development of an additional tensile component. The experimental strain field within the probed sample area is in good agreement with finite element calculations. The strain development observed in the low-alloyed TRIP steel with metastable austenite is compared with that of steels with the same chemical composition containing either no austenite (a DP grade) or stable retained austenite (a TRIP grade produced at a long bainitic holding time). The transformation of metastable austenite under shear is a complex interplay between the local microstructure and the evolving strain fields
    • …
    corecore