7,409 research outputs found

    Separating the Fan Theorem and Its Weakenings

    Full text link
    Varieties of the Fan Theorem have recently been developed in reverse constructive mathematics, corresponding to different continuity principles. They form a natural implicational hierarchy. Some of the implications have been shown to be strict, others strict in a weak context, and yet others not at all, using disparate techniques. Here we present a family of related Kripke models which separates all of the as yet identified fan theorems

    Classification of Stabilometric Time-Series Using an Adaptive Fuzzy Inference Neural Network System

    Full text link
    Stabilometry is a branch of medicine that studies balance-related human functions. The analysis of stabilometric-generated time series can be very useful to the diagnosis and treatment balance-related dysfunctions such as dizziness. In stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods known as events. In this study, a feature extraction scheme has been developed to identify and characterise the events. The proposed scheme utilises a statistical method that goes through the whole time series from the start to the end, looking for the conditions that define events, according to the experts¿ criteria. Based on these extracted features, an Adaptive Fuzzy Inference Neural Network (AFINN) has been applied for the classification of stabilometric signals. The experimental results validated the proposed methodology

    Local Current Distribution and "Hot Spots" in the Integer Quantum Hall Regime

    Full text link
    In a recent experiment, the local current distribution of a two-dimensional electron gas in the quantum Hall regime was probed by measuring the variation of the conductance due to local gating. The main experimental finding was the existence of "hot spots", i.e. regions with high degree of sensitivity to local gating, whose density increases as one approaches the quantum Hall transition. However, the direct connection between these "hot spots" and regions of high current flow is not clear. Here, based on a recent model for the quantum Hall transition consisting of a mixture of perfect and quantum links, the relation between the "hot spots" and the current distribution in the sample has been investigated. The model reproduces the observed dependence of the number and sizes of "hot spots" on the filling factor. It is further demonstrated that these "hot spots" are not located in regions where most of the current flows, but rather, in places where the currents flow both when injected from the left or from the right. A quantitative measure, the harmonic mean of these currents is introduced and correlates very well with the "hot spots" positions

    Effective source approach to self-force calculations

    Full text link
    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended "effective source" for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.Comment: Invited review for NRDA/Capra 2010 (Theory Meets Data Analysis at Comparable and Extreme Mass Ratios), Perimeter Institute, June 2010, CQG special issue - 22 pages, 8 figure

    Ramping fermions in optical lattices across a Feshbach resonance

    Full text link
    We study the properties of ultracold Fermi gases in a three-dimensional optical lattice when crossing a Feshbach resonance. By using a zero-temperature formalism, we show that three-body processes are enhanced in a lattice system in comparison to the continuum case. This poses one possible explanation for the short molecule lifetimes found when decreasing the magnetic field across a Feshbach resonance. Effects of finite temperatures on the molecule formation rates are also discussed by computing the fraction of double-occupied sites. Our results show that current experiments are performed at temperatures considerably higher than expected: lower temperatures are required for fermionic systems to be used to simulate quantum Hamiltonians. In addition, by relating the double occupancy of the lattice to the temperature, we provide a means for thermometry in fermionic lattice systems, previously not accessible experimentally. The effects of ramping a filled lowest band across a Feshbach resonance when increasing the magnetic field are also discussed: fermions are lifted into higher bands due to entanglement of Bloch states, in good agreement with recent experiments.Comment: 9 pages, 7 figure

    Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    Full text link
    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μ\mum3^{-3} with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise

    Spin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices

    Full text link
    We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous Hall and spin Hall effects, with cold atoms in optical lattices.Comment: 3 figure

    Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Get PDF
    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
    corecore