384 research outputs found
Ovalization of Tubes Under Bending and Compression
An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author
Distributions and abundances of Pacific sardine (Sardinops sagax) and other pelagic fishes in the California Current Ecosystem during spring 2006, 2008, and 2010, estimated from acoustic–trawl surveys
The abundances and distributions of coastal pelagic fish
species in the California Current Ecosystem from San Diego to southern Vancouver Island, were estimated from combined acoustic and trawl surveys conducted in the spring of 2006, 2008, and 2010. Pacific sardine (Sardinops sagax), jack mackerel (Trachurus symmetricus), and Pacific mackerel (Scomber japonicus) were the dominant coastal pelagic fish species, in that order. Northern anchovy (Engraulis mordax) and Pacific herring (Clupea pallasii) were sampled only sporadically and therefore estimates for these species were
unreliable. The estimates of sardine biomass compared well with those of the annual assessments and confirmed a declining trajectory of the “northern stock” since 2006. During the sampling period, the biomass of jack mackerel was stable or increasing, and that of Pacific mackerel was
low and variable. The uncertainties in these estimates are mostly the result of spatial patchiness which increased
from sardine to mackerels to anchovy and herring. Future surveys of coastal pelagic fish species in the California
Current Ecosystem should benefit from adaptive sampling based on modeled habitat; increased echosounder and trawl sampling, particularly for the most patchy and nearshore species; and directed-trawl sampling for improved species identification and estimations of their acoustic target
stre
Setting a precautionary catch limit for Antarctic krill
A revised precautionary catch limit for Antarctic krill (Euphausia superba) in the Scotia Sea of 4 million tons was recently adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). The limit was based on a total biomass of 44.3 million tons, as estimated from an acoustic and net survey of krill across the Scotia Sea sector of the Southern Ocean, and a harvest rate of 9.1%, as determined from an analysis of the risks of exceeding defined conservation criteria. We caution, however, that before the fishery can expand to the 4-inillion-ton level it will be necessary to establish mechanisms to avoid concentration of fishing effort, particularly in proximity to colonies of land-breeding krill predators, and to consider the effects of krill immigrating into the region from multiple sources
Prediction and confirmation of seasonal migration of Pacific sardine (Sardinops sagax) in the California Current Ecosystem
During the last century, the population of Pacific sardine
(Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance
of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California
in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts
the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys
using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are
validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring
and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly
different between spring and summer, indicating that they are representative of the entire stock. The results
also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass
estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes
Systemic Correlates of Angiographic Coronary Artery Disease
Coronary angiography allows a direct evaluation of coronary anatomy. The aim of the present investigation was to search for correlations between the magnitude of coronary artery disease, as assessed by angiography, and a number of systemic parameters. A group of 116 patients (80 male, 36 female) with coronary heart disease diagnosed by angiography, aged 62.0±10.5 years, was the subject of an observational study. Correlation and linear regression analysis using coronary artery disease burden (CADB - sum of the percentage of the luminal stenosis encountered in all the lesions of the coronary arterial trees) as dependent variable, and age, sex, plasma calcium, phosphorus, magnesium, glucose, HDL cholesterol, LDL cholesterol, triglycerides, uric acid, estimated glomerular filtration rate and body mass index as independent variables, were carried out. Significant correlation values versus CADB were seen with age (r 0.19, p 0.04), uric acid (r 0.18, p 0.048) and fasting plasma glucose (r 0.33, p<0.001). Linear regression analysis, yielding a global significance level of 0.002, showed a significant value for glucose (p 0.018) and for sex (0.008). In conclusion, among several systemic parameters studied, plasma glucose was found to be correlated to coronary artery atherosclerosis lesions
A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion
Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications
Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue
The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality
Peaks and Troughs of Three-Dimensional Vestibulo-ocular Reflex in Humans
The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45°. These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative large effect on the alignment of the eye rotation axis with respect to the head rotation axis
- …