288 research outputs found

    Determination of the dynamical structure of galaxies using optical spectra

    Full text link
    Galaxy spectra are a rich source of kinematical information since the shapes of the absorption lines reflect the movement of stars along the line-of-sight. We present a technique to directly build a dynamical model for a galaxy by fitting model spectra, calculated from a dynamical model, to the observed galaxy spectra. Using synthetic spectra from a known galaxy model we demonstrate that this technique indeed recovers the essential dynamical characteristics of the galaxy model. Moreover, the method allows a statistically meaningful error analysis on the resulting dynamical quantities.Comment: 14 pages, 14 figures, Latexfile, MNRAS, in pres

    Simulations of the formation and evolution of isolated dwarf galaxies

    Get PDF
    We present new fully self-consistent models of the formation and evolution of isolated dwarf galaxies. We have used the publicly available N-body/SPH code HYDRA, to which we have added a set of star formation criteria, and prescriptions for chemical enrichment (taking into account contributions from both SNIa and SNII), supernova feedback, and gas cooling. The models follow the evolution of an initially homogeneous gas cloud collapsing in a pre-existing dark-matter halo. These simplified initial conditions are supported by the merger trees of isolated dwarf galaxies extracted from the milli-Millennium Simulation. The star-formation histories of the model galaxies exhibit burst-like behaviour. These bursts are a consequence of the blow-out and subsequent in-fall of gas. The amount of gas that leaves the galaxy for good is found to be small, in absolute numbers, ranging between 3x10^7 Msol and 6x10^7 Msol . For the least massive models, however, this is over 80 per cent of their initial gas mass. The local fluctuations in gas density are strong enough to trigger star-bursts in the massive models, or to inhibit anything more than small residual star formation for the less massive models. Between these star-bursts there can be time intervals of several Gyrs. We have compared model predictions with available data for the relations between luminosity and surface brightness profile, half-light radius, central velocity dispersion, broad band colour (B-V) and metallicity, as well as the location relative to the fundamental plane. The properties of the model dwarf galaxies agree quite well with those of observed dwarf galaxies.Comment: 16 pages, 20 figures, accepted for publication in MNRA

    Novel nitrogen-based organosulfur electrodes for advanced intermediate temperature batteries

    Get PDF
    Advanced secondary batteries operating at intermediate temperatures (100 to 200 C) have attracted considerable interest due to their inherent advantages (reduced corrosion and safety risks) over higher temperature systems. Current work in this laboratory has involved research on a class of intermediate temperature Na/beta double prime- alumina/RSSR batteries conceptually similar to Na/S cells, but operating within a temperature range of 100 to 150 C, and having an organosulfur rather than inorganic sulfur positive electrode. The organosulfur electrodes are based on the reversible, two electron eduction of organodisulfides to the corresponding thiolate anions, RSSR + 2 electrons yield 2RS(-), where R is an organic moiety. Among the advantages of such a generic redox couple for battery research is the ability to tailor the physical, chemical, and electrochemical properties of the RSSR molecule through choice of the organic moiety. The viscosity, liquidus range, dielectric constant, equivalent weight, and redox potential can in fact be verified in a largely predictable manner. The current work concerns the use of multiple nitrogen organosulfur molecules, chosen for application in Na/RSSR cells for their expected oxidizing character. In fact, a Na/RSSR cell containing one of these materials, the sodium salt of 5-mercapto 1-methyltetrazole, yielded the highest open circuit voltage obtained yet in the laboratory; 3.0 volts in the charged state and 2.6 volts at 100 percent discharge. Accordingly, the cycling behavior of a series of multiple nitrogen organodisulfides as well as polymeric organodisulfides are presented in this manuscript

    A genetic algorithm for the non-parametric inversion of strong lensing systems

    Full text link
    We present a non-parametric technique to infer the projected-mass distribution of a gravitational lens system with multiple strong-lensed images. The technique involves a dynamic grid in the lens plane on which the mass distribution of the lens is approximated by a sum of basis functions, one per grid cell. We used the projected mass densities of Plummer spheres as basis functions. A genetic algorithm then determines the mass distribution of the lens by forcing images of a single source, projected back onto the source plane, to coincide as well as possible. Averaging several tens of solutions removes the random fluctuations that are introduced by the reproduction process of genomes in the genetic algorithm and highlights those features common to all solutions. Given the positions of the images and the redshifts of the sources and the lens, we show that the mass of a gravitational lens can be retrieved with an accuracy of a few percent and that, if the sources sufficiently cover the caustics, the mass distribution of the gravitational lens can also be reliably retrieved. A major advantage of the algorithm is that it makes full use of the information contained in the radial images, unlike methods that minimise the residuals of the lens equation, and is thus able to accurately reconstruct also the inner parts of the lens.Comment: 11 pages, accepted for publication by MNRA

    Realistic error estimates on kinematic parameters

    Get PDF
    Current error estimates on kinematic parameters are based on the assumption that the data points in the spectra follow a Poisson distribution. For realistic data that have undergone several steps in a reduction process, this is generally not the case. Neither is the noise distribution independent in adjacent pixels. Hence, the error estimates on the derived kinematic parameters will (in most cases) be smaller than the real errors. In this paper we propose a method that makes a diagnosis of the characteristics of the observed noise The method also offers the possibility to calculate more realistic error estimates on kinematic parameters. The method was tested on spectroscopic observations of NGC3258. In this particular case, the realistic errors are almost a factor of 2 larger than the errors based on least squares statistics.Comment: 11 pages, 11 figures, accepted for publication by MNRA

    The Three-Dimensional Mass Distribution in NGC 1700

    Get PDF
    A variety of modeling techniques is used with surface photometry from the literature and recently acquired high-accuracy stellar kinematic data to constrain the three-dimensional mass distribution in the luminous cuspy elliptical galaxy NGC 1700. First, we model the radial velocity field and photometry, and, using a Bayesian technique, estimate the triaxiality T and short-to-long axis ratio c in five concentric annuli between approximately 1 and 3 effective radii. The results are completely consistent with T being constant inside about 2.5 r_e (36 arcsec; 6.7/h kpc). Adding an assumption of constant T as prior information gives an upper limit of T < 0.16 (95% confidence); this relaxes to T < 0.22 if it is also assumed that there is perfect alignment between the angular momentum and the galaxy's intrinsic short axis. Near axisymmetry permits us then to use axisymmetric models to constrain the radial mass profile. Using the Jeans (moment) equations, we demonstrate that 2-integral, constant-M/L models cannot fit the data; but a 2-integral model in which the cumulative enclosed M/L increases by a factor of roughly 2 from the center out to 12/h kpc can. Three-integral models constructed by quadratic programming show that, in fact, no constant-M/L model is consistent with the kinematics. Anisotropic 3-integral models with variable M/L, while not uniquely establishing a minimum acceptable halo mass, imply, as do the moment models, a cumulative M/L_B approximately 10 h at 12/h kpc. We conclude that NGC 1700 represents the best stellar dynamical evidence to date for dark matter in elliptical galaxies.Comment: 26 pages, Latex, AASTeX v4.0, with 11 eps figures. To appear in The Astronomical Journal, January 1999. Figures 1 and 3 are color but are readable in b/

    La Formation de Jupille, nouvelle formation dans le Dévonien inférieur de la Haute-Ardenne (Belgique)

    Get PDF
    The Jupille Formation, new formation in the lower Devonian of the High-Ardenne (Belgium). A new formation named Jupille is proposed to better characterize in the High-Ardenne area the rocks interbedded between the La Roche (or Villé if La Roche is missing) and Pèrnelle Formations, at the transition between the Pragian/Emsian stages (Lower Devonian). This formation is made up of series of grey, blue grey or greenish grey sandstone layers interbedded in blue grey siltstones and slates similar to those of the La Roche Formation. Locally, the sandstones grades to quartzites. Tool marks, current ripples, lenticular and oblique or hummocky cross-stratifications and load casts (pseudonodules) are present in the sandstone layers

    The dynamics of planetary nebulae in the Galaxy: evidence for a third integral

    Get PDF
    We present a dynamical analysis of 673 galactic Planetary Nebulae, using a two-integral axisymmetric model with a Kuzmin-Kutuzov St\"{a}ckel potential. The method fits the kinematics to the projected moments of a distribution function, by means of Quadratic Programming. The 2.2 ÎĽ\mum COBE brightness map has been used after correction for the interstellar extinction as a projected star counts map in the modeling, because it constitutes a galactic distribution view of evolved red populations which are considered to be the progenitors of PNe. The model we have obtained provides a 2-integral distribution function for the COBE 2.2 ÎĽ\mum map, and thus {\it a fortiori} a deprojection of it, which allows moreover the identification of all the major Galactic components. We derive the density laws for them. The projected velocity dispersions are not well fitted though, especially in the disk, which points at the likely presence of a third integral. If this result can be confirmed by additional data, this would mean that for the first time the presence and importance of a third integral on a global scale is demonstrated.Comment: 9 pages, uuencoded gzipped postscript file, 9 figures include

    The puzzlingly large Ca II triplet absorption in dwarf elliptical galaxies

    Full text link
    We present central CaT, PaT, and CaT* indices for a sample of fifteen dwarf elliptical galaxies (dEs). Twelve of these have CaT* ~ 7 A and extend the negative correlation between the CaT* index and central velocity dispersion sigma, which was derived for bright ellipticals (Es), down to 20 < sigma < 55 km/s. For five dEs we have independent age and metallicity estimates. Four of these have CaT* ~ 7 A, much higher than expected from their low metallicities (-1.5 < [Z/H] < -0.5). The observed anti-correlation of CaT* as a function of sigma or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT*-values of bright Es and how they can be extended to incorporate also the observed CaT*-values of dEs. Moreover, 3 dEs in our sample have CaT* ~ 5 A, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the co-existence of low-CaT* and high-CaT* dEs at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous, and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Dynamical streams in the solar neighbourhood

    Full text link
    The true nature of the Hyades and Sirius superclusters is still an open question. In this contribution, we confront Eggen's hypothesis that they are cluster remnants with the results of a kinematic analysis of more than 6000 K and M giants in the solar neighbourhood. This analysis includes new radial velocity data from a large survey performed with the Coravel spectrometer, complemented by Hipparcos parallaxes and Tycho-2 proper motions (Famaey et al. 2004). A maximum-likelihood method, based on a bayesian approach, has been applied to the data, in order to make full use of all the available data (including less precise parallaxes) and to derive the properties of the different kinematic subgroups. Two such subgroups can be identified with the Hyades and Sirius superclusters. Stars belonging to them span a very wide range of age, which is difficult to account for in Eggen's scenario. These groups are thus most probably "dynamical streams" related to the dynamical perturbation by spiral waves rather than to cluster remnants. In this scenario, the Hyades and Ursa Major clusters just happen to be in the Hyades and Sirius streams, which are purely dynamical features that have nothing to do with the remnants of more massive primordial clusters. This mechanism could be the key to understanding the presence of an old metal-rich population, and of many exoplanetary systems in our neighbourhood. Moreover, a strong spiral pattern seems to be needed in order to yield such prominent streams. Since spiral structure is usually baryonic, this would leave very little room for dark matter. This may be an indication that the era of the dark-matter paradigm explaining the dynamics of the Galaxy may come to an end, and is being superseded by modified gravity.Comment: 5 pages, 1 figure, to appear in The Three Dimensional Universe with GAIA, eds M. Perryman & C. Turo
    • …
    corecore