The true nature of the Hyades and Sirius superclusters is still an open
question. In this contribution, we confront Eggen's hypothesis that they are
cluster remnants with the results of a kinematic analysis of more than 6000 K
and M giants in the solar neighbourhood. This analysis includes new radial
velocity data from a large survey performed with the Coravel spectrometer,
complemented by Hipparcos parallaxes and Tycho-2 proper motions (Famaey et al.
2004). A maximum-likelihood method, based on a bayesian approach, has been
applied to the data, in order to make full use of all the available data
(including less precise parallaxes) and to derive the properties of the
different kinematic subgroups. Two such subgroups can be identified with the
Hyades and Sirius superclusters. Stars belonging to them span a very wide range
of age, which is difficult to account for in Eggen's scenario. These groups are
thus most probably "dynamical streams" related to the dynamical perturbation by
spiral waves rather than to cluster remnants.
In this scenario, the Hyades and Ursa Major clusters just happen to be in the
Hyades and Sirius streams, which are purely dynamical features that have
nothing to do with the remnants of more massive primordial clusters. This
mechanism could be the key to understanding the presence of an old metal-rich
population, and of many exoplanetary systems in our neighbourhood. Moreover, a
strong spiral pattern seems to be needed in order to yield such prominent
streams. Since spiral structure is usually baryonic, this would leave very
little room for dark matter. This may be an indication that the era of the
dark-matter paradigm explaining the dynamics of the Galaxy may come to an end,
and is being superseded by modified gravity.Comment: 5 pages, 1 figure, to appear in The Three Dimensional Universe with
GAIA, eds M. Perryman & C. Turo