68,894 research outputs found

    Calculating the relative entropy of entanglement

    Full text link
    We extend Vedral and Plenio's theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains' theorem 9 in Phys. Rev. A 60, 179.Comment: 2 pages, RevTex, an important reference adde

    Theory of point contact spectroscopy in electron-doped cuprates

    Full text link
    In the hole-doped dx2−y2d_{x^{2}-y^{2}}-wave cuprate superconductor, due to the midgap surface state (MSS), a zero bias conductance peak (ZBCP) is widely observed in [110] interface point contact spectroscopy (PCS). However, ZBCP of this geometry is rarely observed in the electron-doped cuprates, even though their pairing symmetry is still likely the dx2−y2d_{x^{2}-y^{2}}-wave. We argue that this is due to the coexistence of antiferromagnetic (AF) and the superconducting (SC) orders. Generalizing the Blonder-Tinkham-Klapwijk (BTK) formula to include an AF coupling, it is shown explicitly that the MSS is destroyed by the AF order. The calculated PCS is in good agreement with the experiments.Comment: 5 pages, 2 figures. Replaced with published versio

    Fractional statistic

    Full text link
    We improve Haldane's formula which gives the number of configurations for NN particles on dd states in a fractional statistic defined by the coupling g=l/mg=l/m. Although nothing is changed in the thermodynamic limit, the new formula makes sense for finite N=pm+rN=pm+r with pp integer and 0<r≤m.0<r\leq m. A geometrical interpretation of fractional statistic is given in terms of ''composite particles''.Comment: flatex hald.tex, 3 files Submitted to: Phys. Rev.

    Interplay between antiferromagnetic order and spin polarization in ferromagnetic metal/electron-doped cuprate superconductor junctions

    Full text link
    Recently we proposed a theory of point-contact spectroscopy and argued that the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexistence of antiferromagnetic (AF) and d-wave superconducting orders [Phys. Rev. B {\bf 76}, 220504(R) (2007)]. Here we extend the theory to study the tunneling in the ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions. In addition to the AF order, the effects of spin polarization, Fermi-wave vector mismatch (FWM) between the FM and EDSC regions, and effective barrier are investigated. It is shown that there exits midgap surface state (MSS) contribution to the conductance to which Andreev reflections are largely modified due to the interplay between the exchange field of ferromagnetic metal and the AF order in EDSC. Low-energy anomalous conductance enhancement can occur which could further test the existence of AF order in EDSC. Finally, we propose a more accurate formula in determining the spin polarization value in combination with the point-contact conductance data.Comment: 9 pages, 8 figure

    Phase separation of the Potts model in que square lattice

    Full text link
    When the two dimensional q-color Potts model in the square lattice is quenched at zero temperature with Glauber dynamics, the energy decreases in time following an Allen-Cahn power law, and the system converges to a phase with energy higher than the ground state energy after an arbitrary large time when q>4. At low but finite temperature, it cesses to obey the power-law regime and orders after a very long time, which increases with q, and before which it performs a domain growth process which tends to be slower as q increases. We briefly present and comment numerical results on the ordering at nonzero temperature.Comment: 3 pages, 1 figure, proceedings of the "International Workshop on Complex sytems", June 2006 in Santander (Spain

    Twisted SUSY Invariant Formulation of Chern-Simons Gauge Theory on a Lattice

    Get PDF
    We propose a twisted SUSY invariant formulation of Chern-Simons theory on a Euclidean three dimensional lattice. The SUSY algebra to be realized on the lattice is the N=4 D=3 twisted algebra that was recently proposed by D'Adda et al.. In order to keep the manifest anti-hermiticity of the action, we introduce oppositely oriented supercharges. Accordingly, the naive continuum limit of the action formally corresponds to the Landau gauge fixed version of Chern-Simons theory with complex gauge group which was originally proposed by Witten. We also show that the resulting action consists of parity even and odd parts with different coefficients.Comment: 22 pages, 5 figures; v2,v3 added references, v4 added two paragraphs and one figure in the summar

    `Composite particles' and the eigenstates of Calogero-Sutherland and Ruijsenaars-Schneider

    Full text link
    We establish a one-to-one correspondance between the ''composite particles'' with NN particles and the Young tableaux with at most NN rows. We apply this correspondance to the models of Calogero-Sutherland and Ruijsenaars-Schneider and we obtain a momentum space representation of the ''composite particles'' in terms of creation operators attached to the Young tableaux. Using the technique of bosonisation, we obtain a position space representation of the ''composite particles'' in terms of products of vertex operators. In the special case where the ''composite particles'' are bosons and if we add one extra quasiparticle or quasihole, we construct the ground state wave functions corresponding to the Jain series ν=p/(2np±1)\nu =p/(2np\pm 1) of the fractional quantum Hall effect.Comment: latex calcomp2.tex, 5 files, 30 pages [SPhT-T99/080], submitted to J. Math. Phy

    Exclusonic Quasiparticles and Thermodynamics of Fractional Quantum Hall Liquids

    Full text link
    Quasielectrons and quasiholes in the fractional quantum Hall liquids obey fractional (including nontrivial mutual) exclusion statistics. Their statistics matrix can be determined from several possible state-counting scheme, involving different assumptions on statistical correlations. Thermal activation of quasiparticle pairs and thermodynamic properties of the fractional quantum Hall liquids near fillings 1/m1/m (mm odd) at low temperature are studied in the approximation of generalized ideal gas. The existence of hierarchical states in the fractional quantum Hall effect is shown to be a manifestation of the exclusonic nature of the relevant quasiparticles. For magnetic properties, a paramagnetism-diamagnetism transition appears to be possible at finite temperature.Comment: latex209, REVTE

    Action Principle for the Classical Dual Electrodynamics

    Get PDF
    The purpose of this paper is to formulate an action principle which allows for the construction of a classical lagrangean including both electric and magnetic currents. The lagrangean is non-local and shown to yield all the expected (local) equations for dual electrodynamics.Comment: latex, 8 pages, no figure

    Half-metallicity and efficient spin injection in AlN/GaN:Cr (0001) heterostructure

    Get PDF
    First-principles investigations of the structural, electronic and magnetic properties of Cr-doped AlN/GaN (0001) heterostructures reveal that Cr segregates into the GaN region, that these interfaces retain their important half-metallic character and thus yield efficient (100 %) spin polarized injection from a ferromagnetic GaN:Cr electrode through an AlN tunnel barrier - whose height and width can be controlled by adjusting the Al concentration in the graded bandgap engineered Al(1-x)Ga(x)N (0001) layers.Comment: submitted for publicatio
    • …
    corecore